ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculating the Hyperfine Tensors for Group-IV Impurity-Vacancy Centers in Diamond: A Hybrid Density-Functional Theory Approach

129   0   0.0 ( 0 )
 نشر من قبل Rodrick Kuate Defo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hyperfine interaction is an important probe for understanding the structure and symmetry of defects in a semiconductor. Density-functional theory has shown that it can provide useful first-principles predictions for both the hyperfine tensor and the hyperfine constants that arise from it. Recently there has been great interest in using group-IV impurity-vacancy color centers X$V^-$ (where X = Si, Ge, Sn, or Pb and $V$ is a carbon vacancy) for important applications in quantum computing and quantum information science. In this paper, we have calculated the hyperfine tensors for these X$V^-$ color centers using the HSE06 screened Hartree-Fock hybrid exchange-correlation functional with the inclusion of core electron spin polarization. We have compared our results to calculations which only use the PBE exchange-correlation functional without the inclusion of core electron spin polarization and we have found our results are in very good agreement with available experimental results. Finally, we have theoretically shown that these X$V^-$ color centers exhibit a Jahn-Teller distortion which explains the observed anisotropic distribution of the hyperfine constants among the neighboring $^{13}$C nuclear spins.

قيم البحث

اقرأ أيضاً

We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV$^-$) color centers in diamond as quantum emitters. Hybrid SiC/diamond structures are realized by combining the growth of nanoand micro-diamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV$^-$ color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ionimplantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV$^-$ on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV$^-$ centers. Scanning confocal photoluminescence measurements reveal optically active SiV$^-$ lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow linewidths and small inhomogeneous broadening of SiV$^-$ lines from all-diamond nano-pillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV$^-$ centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.
We present a procedure that makes use of group theory to analyze and predict the main properties of the negatively charged nitrogen-vacancy (NV) center in diamond. We focus on the relatively low temperatures limit where both the spin-spin and spin-or bit effects are important to consider. We demonstrate that group theory may be used to clarify several aspects of the NV structure, such as ordering of the singlets in the ($e^2$) electronic configuration, the spin-spin and the spin-orbit interactions in the ($ae$) electronic configuration. We also discuss how the optical selection rules and the response of the center to electric field can be used for spin-photon entanglement schemes. Our general formalism is applicable to a broad class of local defects in solids. The present results have important implications for applications in quantum information science and nanomagnetometry.
A combined approach of first-principles density-functional calculations and the systematic cluster-expansion scheme is presented. The dipole, quadrupole, and Coulomb matrix elements obtained from ab initio calculations are used as an input to the mic roscopic many-body theory of the excitonic optical response. To demonstrate the hybrid approach for a nontrivial semiconductor system, the near-bandgap excitonic optical absorption of rutile TiO2 is computed. Comparison with experiments yields strong evidence that the observed near-bandgap features are due to a dipole-forbidden but quadrupole-allowed 1s-exciton state.
We present a real-space formulation and implementation of Kohn-Sham Density Functional Theory suited to twisted geometries, and apply it to the study of torsional deformations of X (X = C, Si, Ge, Sn) nanotubes. Our formulation is based on higher ord er finite difference discretization in helical coordinates, uses ab intio pseudopotentials, and naturally incorporates rotational (cyclic) and screw operation (i.e., helical) symmetries. We discuss several aspects of the computational method, including the form of the governing equations, details of the numerical implementation, as well as its convergence, accuracy and efficiency properties. The technique presented here is particularly well suited to the first principles simulation of quasi-one-dimensional structures and their deformations, and many systems of interest can be investigated using small simulation cells containing just a few atoms. We apply the method to systematically study the properties of single-wall zigzag and armchair group-IV nanotubes, as they undergo twisting. For the range of deformations considered, the mechanical behavior of the tubes is found to be largely consistent with isotropic linear elasticity, with the torsional stiffness varying as the cube of the nanotube radius. Furthermore, for a given tube radius, this quantity is seen to be highest for carbon nanotubes and the lowest for those of tin, while nanotubes of silicon and germanium have intermediate values close to each other. We also describe different aspects of the variation in electronic properties of the nanotubes as they are twisted. In particular, we find that akin to the well known behavior of armchair carbon nanotubes, armchair nanotubes of silicon, germanium and tin also exhibit bandgaps that vary periodically with imposed rate of twist, and that the periodicity of the variation scales in an inverse quadratic manner with the tube radius.
Silicon carbide with optically and magnetically active point defects offers unique opportunities for quantum technology applications. Since interaction with these defects commonly happens through optical excitation and de-excitation, a complete under standing of their light-matter interaction in general and optical signatures, in particular, is crucial. Here, we employ quantum mechanical density functional theory calculations to investigate the photoluminescence lineshapes of selected, experimentally observed color centers (including single vacancies, double vacancies, and vacancy impurity pairs) in 4H-SiC. The analysis of zero-phonon lines as well as Huang-Rhys and Debye-Waller factors are accompanied by a detailed study of the underlying lattice vibrations. We show that the defect lineshapes are governed by strong coupling to bulk phonons at lower energies and localized vibrational modes at higher energies. Generally, good agreement to the available experimental data is obtained, and thus we expect our theoretical work to be beneficial for the identification of defect signatures in the photoluminescence spectra and thereby advance the research in quantum photonics and quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا