ﻻ يوجد ملخص باللغة العربية
The nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC5253 with wavelength coverage from 1500 Ang to 1.9 micron in 13 filters. These include H-alpha, P-beta, and P-alpha, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the 9 optically brightest clusters (M_V < -8.8) and the two young radio nebula clusters. The clusters have ages ~1-15 Myr and masses ~1x10^4 - 2.5x10^5 M_sun. The clusters spatial location and ages indicate that star formation has become more concentrated towards the radio nebula over the last ~15 Myr. The most massive cluster is in the radio nebula; with a mass 2.5x10^5 M_sun and an age ~1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with A_V~50 mag, and shows a clear nearIR excess, likely from hot dust. The second radio nebula cluster is also ~1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.
We investigate the star formation history of both the bright star clusters and the diffuse `field star population in the dwarf starburst galaxy NGC 5253 using STIS longslit ultraviolet spectroscopy. Our slit covers a physical area of 370 x 1.6 pc and
We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galax
A local dwarf galaxy, NGC 5253, has a young super star cluster that may provide an example of highly efficient star formation. Here we report the detection and imaging, with the Submillimeter Array, of the J= 3-2 rotational transition of CO at the lo
The conventional picture of coeval, chemically homogeneous, populous star clusters -- known as `simple stellar populations (SSPs) -- is a view of the past. Photometric and spectroscopic studies reveal that almost all ancient globular clusters in the
We report the detection of CO(2-1) and 3.1 mm and 1.3 mm continuum emission towards the extremely young starburst in NGC 5253, with data taken from the Owens Valley Millimeter Array. Faint CO emission originates in five molecular clouds distributed a