ﻻ يوجد ملخص باللغة العربية
We investigate the star formation history of both the bright star clusters and the diffuse `field star population in the dwarf starburst galaxy NGC 5253 using STIS longslit ultraviolet spectroscopy. Our slit covers a physical area of 370 x 1.6 pc and includes 8 apparent clusters and several inter-cluster regions of diffuse light which we take to be the field. The diffuse light spectrum lacks the strong O-star wind features which are clearly visible in spectra of the brightest clusters. This discrepancy provides compelling evidence that the diffuse light is not reflected light from nearby clusters, but originates in a UV-bright field star population, and it raises the issue of whether the star formation process may be operating differently in the field than in clusters. We compare our spectra to STARBURST99 evolutionary synthesis models which incorporate a new low metallicity atlas of O-star spectra. We favor a scenario which accounts for the paucity of O-stars in the field without requiring the field to have a different IMF than the clusters: stellar clusters form continuously and then dissolve on ~10 Myr timescales and disperse their remaining stars into the field. We consider the probable contribution of an O-star deficient field population to the spatially unresolved spectra of high redshift galaxies. (Abridged)
The nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula). To investigate the role of these clusters in
A local dwarf galaxy, NGC 5253, has a young super star cluster that may provide an example of highly efficient star formation. Here we report the detection and imaging, with the Submillimeter Array, of the J= 3-2 rotational transition of CO at the lo
We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galax
ABRIDGED: A detailed 2D study of the central region of NGC5253 has been performed to characterize the stellar and ionized gas structure as well as the extinction distribution, physical properties and kinematics of the ionized gas in the central ~210p
We have detected the H92alpha radio recombination line from two dwarf starburst galaxies, NGC 5253 and He 2-10, using the Very Large Array. Both the line data as well as the radio continuum data are used to model the properties of the ionized gas in