ﻻ يوجد ملخص باللغة العربية
Through $Bbar{B}$ mixing system, one can construct an asymmetry which naively seems to be a time reversal (T) odd quantity. In this article, the two processes $(mathrm{a}): B_-rightarrow bar{B^0}$ and $(mathrm{b}): bar{B^0}rightarrow B_-$ are used to construct the event number asymmetry. The CP violation of Kaon system denoted as $epsilon_K$ contributes to observables and we evaluate the contribution from $epsilon_K$ explicitly. The asymmetry is formulated with phase convention independent parameters which are invariant under redefinition of phase of quark fields. The overall factors of the time dependent decay rates are taken into account in this article. Furthermore, we suggest conditions for the asymmetry to be a T-odd quantity. The one of such conditions arises due to the difference of overall factors which form the asymmetry.
BaBar collaboration announced that they observed time reversal (T) asymmetry through $B$ meson system. In the experiment, time dependencies of two distinctive processes, $B_- rightarrow bar{B^0}$ and $bar{B^0}rightarrow B_-$($-$ expresses CP value) a
We review the two and three-body baryonic $B$ decays with the dibaryon (${bf Bbar B}$) as the final states. Accordingly, we summarize the experimental data of the branching fractions, angular asymmetries, and $CP$ asymmetries. In the approach of pert
This article summarizes recent developments in $Bto D^{(ast)}tau u$ decays. We explain how to extract the tau leptons production properties from the kinematics of its decay products. The focus is on hadronic tau decays, which are most sensitive to th
We discuss the possibility of observing a loosely bound molecular state in a B three-body hadronic decay. In particular we use the QCD sum rule approach to study a $eta^prime-pi$ molecular current. We consider an isovector-scalar $I^G J^{PC}= 1^-~0^{
To date, the weak-phase $gamma$ has been measured using two-body $B$-meson decays such as $Bto D K$ and $Bto Dpi$, whose amplitudes contain only tree-level diagrams. But $gamma$ can also be extracted from three-body charmless hadronic $B$ decays. Sin