ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting $gamma$ from three-body $B$-meson decays

127   0   0.0 ( 0 )
 نشر من قبل Bhubanjyoti Bhattacharya
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

To date, the weak-phase $gamma$ has been measured using two-body $B$-meson decays such as $Bto D K$ and $Bto Dpi$, whose amplitudes contain only tree-level diagrams. But $gamma$ can also be extracted from three-body charmless hadronic $B$ decays. Since the amplitudes for such decays contain both tree- and loop-level diagrams, $gamma$ obtained in this way is sensitive to new physics that can enter into these loops. The comparison of the values of $gamma$ extracted using tree-level and loop-level methods is therefore an excellent test for new physics. In this talk, we will show how U-spin and flavor-SU(3) symmetries can be used to develop methods for extracting $gamma$ from $Bto Kpipi$ and $Bto KK{bar K}$ decays. We describe a successful implementation of the flavor-SU(3) symmetry method applied to BaBar data.



قيم البحث

اقرأ أيضاً

We review the two and three-body baryonic $B$ decays with the dibaryon (${bf Bbar B}$) as the final states. Accordingly, we summarize the experimental data of the branching fractions, angular asymmetries, and $CP$ asymmetries. In the approach of pert urbative QCD counting rules, we study the three-body decay channels. Using the $W$-boson annihilation (exchange) mechanism, the branching fractions of $Bto {bf B bf bar B}$ are shown to be interpretable. In particular, we review the $CP$ asymmetries of $Bto {bf Bbar B}M$, which are promising to be measured by the LHCb and Belle II experiments.
This article summarizes recent developments in $Bto D^{(ast)}tau u$ decays. We explain how to extract the tau leptons production properties from the kinematics of its decay products. The focus is on hadronic tau decays, which are most sensitive to th e tau polarizations. We present new results for effects of new physics in tau polarization observables and quantify the observation prospects at BELLE II.
CP asymmetries have been measured recently by the LHCb collaboration in three-body $B^+$ decays to final states involving charged pions and kaons. Large asymmetries with opposite signs at a level of about 60% have been observed in $B^pmto pi^pm({rm o r} K^pm)pi^+pi^-$ and $B^pm to pi^pm K^+K^-$ for restricted regions in the Dalitz plots involving $pi^+pi^-$ and $K^+K^-$ with low invariant mass. U-spin is shown to predict corresponding $Delta S=0$ and $Delta S=1$ asymmetries with opposite signs and inversely proportional to their branching ratios, in analogy with a successful relation predicted thirteen years ago between asymmetries in $B_sto K^-pi^+$ and $B^0 to K^+ pi^-$. We compare these predictions with the measured integrated asymmetries. Effects of specific resonant or non-resonant partial waves on enhanced asymmetries for low-pair-mass regions of the Dalitz plot are studied in $B^pm to pi^pm pi^+pi^-$. The closure of low-mass $pi^+pi^-$ and $K^+K^-$ channels involving only $pipi leftrightarrow Kbar K$ rescattering may explain by CPT approximately equal magnitudes and opposite signs measured in $B^pmto pi^pmpi^+pi^-$ and $B^pm to pi^pm K^+K^-$.
We discuss the possibility of observing a loosely bound molecular state in a B three-body hadronic decay. In particular we use the QCD sum rule approach to study a $eta^prime-pi$ molecular current. We consider an isovector-scalar $I^G J^{PC}= 1^-~0^{ ++}$ molecular current and we use the two-point and three-point functions to study the mass and decay width of such state. We consider the contributions of condensates up to dimension six and we work at leading order in $alpha_s$. We obtain a mass around 1.1 GeV, consistent with a loosely bound state, and a $eta^prime-pirightarrow K^+ K^-$ decay width around 10 MeV.
We study the exclusive semileptonic $B$-meson decays $Bto K(pi)ell^+ell^-$, $Bto K(pi) ubar u$, and $Btopitau u$, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Latti ce and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control for suitably binned observables. For example, the resulting partially integrated branching fractions for $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ outside the charmonium resonance region are 1-2$sigma$ higher than the LHCb Collaborations recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7$sigma$. Combining the Standard-Model rates with LHCbs measurements yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{td}|=7.45{(69)}times10^{-3}$, $|V_{ts}|=35.7(1.5)times10^{-3}$, and $|V_{td}/V_{ts}|=0.201{(20)}$, which are compatible with the values obtained from neutral $B_{(s)}$-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the Wilson coefficients ${rm Re}(C_9)$ and ${rm Re}(C_{10})$ from $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ are competitive with those from $Bto K^* mu^+mu^-$, and display a 2.0$sigma$ tension with the Standard Model. Our predictions for $Bto K(pi) ubar u$ and $Btopitau u$ are close to the current experimental limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا