ترغب بنشر مسار تعليمي؟ اضغط هنا

Tau Polarimetry in B Meson Decays

106   0   0.0 ( 0 )
 نشر من قبل Susanne Westhoff
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article summarizes recent developments in $Bto D^{(ast)}tau u$ decays. We explain how to extract the tau leptons production properties from the kinematics of its decay products. The focus is on hadronic tau decays, which are most sensitive to the tau polarizations. We present new results for effects of new physics in tau polarization observables and quantify the observation prospects at BELLE II.



قيم البحث

اقرأ أيضاً

We review the two and three-body baryonic $B$ decays with the dibaryon (${bf Bbar B}$) as the final states. Accordingly, we summarize the experimental data of the branching fractions, angular asymmetries, and $CP$ asymmetries. In the approach of pert urbative QCD counting rules, we study the three-body decay channels. Using the $W$-boson annihilation (exchange) mechanism, the branching fractions of $Bto {bf B bf bar B}$ are shown to be interpretable. In particular, we review the $CP$ asymmetries of $Bto {bf Bbar B}M$, which are promising to be measured by the LHCb and Belle II experiments.
The meson decays $Bto Dtau u$ and $Bto D^* tau u$ are sensitive probes of the $bto ctau u$ transition. In this work we present a complete framework to obtain the maximum information on the physics of $Bto D^{(*)}tau u$ with polarized $tau$ leptons a nd unpolarized $D^{(*)}$ mesons. Focusing on the hadronic decays $tauto pi u$ and $tautorho u$, we show how to extract seven $tau$ asymmetries from a fully differential analysis of the final-state kinematics. At Belle II with $50~text{ab}^{-1}$ of data, these asymmetries could potentially be measured with percent level statistical uncertainty. This would open a new window into possible new physics contributions in $bto ctau u$ and would allow us to decipher its Lorentz and gauge structure.
We discuss the possibility of observing a loosely bound molecular state in a B three-body hadronic decay. In particular we use the QCD sum rule approach to study a $eta^prime-pi$ molecular current. We consider an isovector-scalar $I^G J^{PC}= 1^-~0^{ ++}$ molecular current and we use the two-point and three-point functions to study the mass and decay width of such state. We consider the contributions of condensates up to dimension six and we work at leading order in $alpha_s$. We obtain a mass around 1.1 GeV, consistent with a loosely bound state, and a $eta^prime-pirightarrow K^+ K^-$ decay width around 10 MeV.
We provide a comprehensive test of factorization in the heavy-heavy $B$ decays motivated by the recent experimental data from BELLE and BABAR collaborations. The penguin effects are not negligible in the B decays with two pseudoscalar mesons. The dir ect CP asymmetries are found to be a few percent. We give estimates on the weak annihilation contributions by analogy to the observed annihilation-dominated processes. The $N_c$ insensitivity of branching ratios indicates that the soft final state interactions are not dominant. We also study the polarizations in $Bto D^*D_{(s)}^*$ decays. The power law shows that the transverse perpendicular polarization fraction is small. The effects of the heavy quark symmetry breaking caused by the perturbative QCD and power corrections on the transverse polarization are also investigated.
To date, the weak-phase $gamma$ has been measured using two-body $B$-meson decays such as $Bto D K$ and $Bto Dpi$, whose amplitudes contain only tree-level diagrams. But $gamma$ can also be extracted from three-body charmless hadronic $B$ decays. Sin ce the amplitudes for such decays contain both tree- and loop-level diagrams, $gamma$ obtained in this way is sensitive to new physics that can enter into these loops. The comparison of the values of $gamma$ extracted using tree-level and loop-level methods is therefore an excellent test for new physics. In this talk, we will show how U-spin and flavor-SU(3) symmetries can be used to develop methods for extracting $gamma$ from $Bto Kpipi$ and $Bto KK{bar K}$ decays. We describe a successful implementation of the flavor-SU(3) symmetry method applied to BaBar data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا