ﻻ يوجد ملخص باللغة العربية
A general method for the quantification of dipolar interactions in assemblies of nanoparticles has been developed from a model sample constituted by magnetite nanoparticles of 5 nm in diameter, in powder form with oleic acid as a surfactant so that the particles were solely separated from each other through an organic layer of about 1 nm in thickness. This quantification is based on the comparison of the distribution of energy barriers for magnetization reversal obtained from time-dependent relaxation measurements starting from either (i) an almost random orientation of the particles magnetizations or (ii) a collinear arrangement of them prepared by previously field cooling the sample. Experimental results and numerical simulations show that the mean dipolar field acting on each single particle is significantly reduced when particles magnetizations are collinearly aligned. Besides, the intrinsic distribution of the energy barriers of anisotropy for the non-interacting case was evaluated from a reference sample where the same magnetic particles were individually coated with a thick silica shell in order to make dipolar interactions negligible. Interestingly, the results of the numerical simulations account for the relative energy shift of the experimental energy barrier distributions corresponding to the interacting and non-interacting cases, thus supporting the validity of the proposed method for the quantification of dipolar interactions.
Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engin
In contrast to bulk materials, nanoscale crystal growth is critically influenced by size- and shape-dependent properties. However, it is challenging to decipher how stoichiometry, in the realm of mixed-valence elements, can act to control physical pr
The nanoscale distribution of magnetic anisotropies was measured in core@shell MnFe$_2$O$_4$@CoFe$_2$O$_4$ 7.0 nm particles using a combination of element selective magnetic spectroscopies with different probing depths. As this picture is not accessi
Magnetite epitaxial thin films have been prepared by pulsed laser deposition at 340 C on MgO and Si substrates. One key result is that the thin film properties are almost identical to the properties of bulk material. For 40 - 50 nm thick films, the s
Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity m