ترغب بنشر مسار تعليمي؟ اضغط هنا

Hall effect in Fe$_3$O$_4$ epitaxial thin films

215   0   0.0 ( 0 )
 نشر من قبل Daniel Reisinger
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetite epitaxial thin films have been prepared by pulsed laser deposition at 340 C on MgO and Si substrates. One key result is that the thin film properties are almost identical to the properties of bulk material. For 40 - 50 nm thick films, the saturation magnetization and conductivity are respectively 453 emu/cm^3 and 225 1/(Ohm cm) at room temperature. The Verwey transition is at 117 K. The Hall effect indicates an electron concentration corresponding to 0.22 electrons per formula unit at room temperature. Normal and anomalous Hall effect both have a negative sign.



قيم البحث

اقرأ أيضاً

Pulsed laser deposition was employed to grow thin films of the Heusler compounds Co_2MnSi and Co_2FeSi. Epitaxial growth was realized both directly on MgO (100) and on a Cr or Fe buffer layer. Structural analysis by x-ray and electron diffraction sho ws for both materials the ordered L2_1 structure. Bulk magnetization was determined with a SQUID magnetometer. The values agree with the Slater-Pauling rule for half-metallic Heusler compounds. On the films grown directly on the substrate measurements of the Hall effect have been performed. The normal Hall effect is nearly temperature independent and points towards a compensated Fermi surface. The anomalous contribution is found to be dominated by skew scattering. A remarkable sign change of both normal and anomalous Hall coefficients is observed on changing the valence electron count from 29 (Mn) to 30 (Fe).
113 - Lu Guo 2019
Rare earth pyrochlore Iridates (RE2Ir2O7) consist of two interpenetrating cation sublattices, the RE with highly-frustrated magnetic moments, and the Iridium with extended conduction orbitals significantly mixed by spin-orbit interactions. The coexis tence and coupling of these two sublattices create a landscape for discovery and manipulation of quantum phenomena such as the topological Hall effect, massless conduction bands, and quantum criticality. Thin films allow extended control of the material system via symmetry-lowering effects such as strain. While bulk Pr2Ir2O7 shows a spontaneous hysteretic Hall effect below 1.5K, we observe the effect at elevated temperatures up to 15K in epitaxial thin films on (111) YSZ substrates synthesized via solid phase epitaxy. Similar to the bulk, the lack of observable long-range magnetic order in the thin films points to a topological origin. We use synchrotron-based element-specific x-ray diffraction (XRD) and x-ray magnetic circular dichroism (XMCD) to compare powders and thin films to attribute the spontaneous Hall effect in the films to localization of the Ir moments. We link the thin film Ir local moments to lattice distortions absent in the bulk-like powders. We conclude that the elevated-temperature spontaneous Hall effect is caused by the topological effect originating either from the Ir or Pr sublattice, with interaction strength enhanced by the Ir local moments. This spontaneous Hall effect with weak net moment highlights the effect of vanishingly small lattice distortions as a means to discover topological phenomena in metallic frustrated magnetic materials.
The rare-earth nickelates (RNiO3) exhibit interesting phenomena such as unusual antiferromagnetic order at wavevector q = (1/2, 0, 1/2) and a tunable insulator-metal transition that are subjects of active research. Here we present temperature-depende nt transport measurements of the resistivity, magnetoresistance, Seebeck coefficient, and Hall coefficient (RH) of epitaxial SmNiO3 thin films with varying oxygen stoichiometry. We find that from room temperature through the high temperature insulator-metal transition, the Hall coefficient is hole-like and the Seebeck coefficient is electron-like. At low temperature the Neel transition induces a crossover in the sign of RH to electron-like, similar to the effects of spin density wave formation in metallic systems but here arising in an insulating phase ~200 K below the insulator-metal transition. We propose that antiferromagnetism can be stabilized by bandstructure even in insulating phases of correlated oxides, such as RNiO3, that fall between the limits of strong and weak electron correlation.
138 - Daesu Lee , A. Yoon , S. Y. Jang 2011
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders o f magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.
187 - T. Golod , A. Rydh , 2011
We study Hall effect in sputtered NixPt1-x thin films with different Ni concentrations. Temperature, magnetic field and angular dependencies are analyzed and the phase diagram of NiPt thin films is obtained. It is found that films with sub-critical N i concentration exhibit cluster-glass behavior at low temperatures with a perpendicular magnetic anisotropy below the freezing temperature. Films with over-critical Ni concentration are ferromagnetic with parallel anisotropy. At the critical concentration the state of the film is strongly frustrated. Such films demonstrate canted magnetization with the easy axis rotating as a function of temperature. The magnetism appears via consecutive paramagnetic - cluster glass - ferromagnetic transitions, rather than a single second-order phase transition. But most remarkably, the extraordinary Hall effect changes sign at the critical concentration. We suggest that this is associated with a reconstruction of the electronic structure of the alloy at the normal metal - ferromagnet quantum phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا