ﻻ يوجد ملخص باللغة العربية
The nanoscale distribution of magnetic anisotropies was measured in core@shell MnFe$_2$O$_4$@CoFe$_2$O$_4$ 7.0 nm particles using a combination of element selective magnetic spectroscopies with different probing depths. As this picture is not accessible by any other technique, emergent magnetic properties were revealed. The coercive field is not constant in a whole nanospinel. The very thin (0.5 nm) CoFe$_2$O$_4$ hard shell imposes a strong magnetic anisotropy to the otherwise very soft MnFe$_2$O$_4$ core: a large gradient in coercivity was measured inside the MnFe$_2$O$_4$ core with lower values close to the interface region, while the inner core presents a substantial coercive field (0.54 T) and a very high remnant magnetization (90% of the magnetization at saturation).
Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engin
Spinel-type CoFe$_2$O$_4$ is a ferrimagnetic insulator with the Neel temperature exceeding 790 K, and shows a strong cubic magnetocrystalline anisotropy (MCA) in bulk materials. However, when a CoFe$_2$O$_4$ film is grown on other materials, its magn
We report pressure-dependent reflection and transmission measurements on ZnCr$_2$Se$_4$, HgCr$_2$S$_4$, and CdCr$_2$O$_4$ single crystals at room temperature over a broad spectral range 200-24000 cm$^{-1}$. The pressure dependence of the phonon modes
The high-pressure synthesized quasi-one-dimensional compounds NaMn$_2$O$_4$ and Li$_{0.92}$Mn$_2$O$_4$ are both antiferromagnetic insulators, and here their atomic and magnetic structures were investigated using neutron powder diffraction. The presen
The geometrically frustrated two dimensional triangular lattice magnets A${_4}$BB${_2}$O$_{12}$ (A = Ba, Sr, La; B = Co, Ni, Mn; B = W, Re) have been studied by x-ray diffraction, AC and DC susceptibilities, powder neutron diffraction, and specific h