ﻻ يوجد ملخص باللغة العربية
Doping at the rare-earth site by divalent alkaline-earth ions in perovskite lattice has witnessed a variety of magnetic and electronic orders with spatially correlated charge, spin and orbital degrees of freedom. Here, we report an antisite disorder driven spontaneous exchange bias effect as a result of hole carrier (Sr2+) doping in La2-xSrxCoMnO6 (0 < x < 1) double perovskites. X-ray diffraction and Raman spectroscopy have evidenced an increase in disorder with the increase of Sr content up to x = 0.5 and thereby decreases from x = 0.5 to 1. X-ray absorption spectroscopy has revealed that only Co is present in mixed valent Co2+ and Co3+ states with Sr doping to compensate the charge neutrality. Magnetotransport is strongly correlated with the increase of antisite disorder. The antisite disorder at the B-site interrupts the long-range ferromagnetic order by introducing various magnetic interactions and instigates reentrant glassy dynamics, phase separation and canted type antiferromagnetic behavior with the decrease of temperature. This leads to novel magnetic microstructure with unidirectional anisotropy that causes spontaneous exchange bias effect that can be tuned with the amount of antisite disorder.
We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the ferrimagnetic (FI) state in a spontaneously phase separated system. The zero-field cooled magnetiz
Exchange bias-like effect observed in the intermetallic compound TbFeAl, which displays a magnetic phase transition at $T^h_c approx$ 198~K and a second one at $T^l_c approx$ 154~K, is reported. {em Jump}-like features are observed in the isothermal
In this paper, high Fe-concentration Fe$_{1-x}$Ni$_{x}$ alloys were investigated using high resolution X-ray photoelectron spectroscopy (XPS) down to 10K temperature. The Fe 2s core level exhibits three features, two low binding features correspondin
The exchange bias (EB) in LaMn_{0.7}Fe_{0.3}O_3 is observed by the negative shift and training effect of the hysteresis loops, while the sample was cooled in external magnetic field. The analysis of cooling field dependence of EB gives the size of th
The exchange bias effect is an essential component of magnetic memory and spintronic devices. Whereas recent research has shown that anisotropies perpendicular to the device plane provide superior stability against thermal noise, it has proven remark