ﻻ يوجد ملخص باللغة العربية
The exchange bias effect is an essential component of magnetic memory and spintronic devices. Whereas recent research has shown that anisotropies perpendicular to the device plane provide superior stability against thermal noise, it has proven remarkably difficult to realize perpendicular exchange bias in thin-film structures. Here we demonstrate a strong perpendicular exchange bias effect in heterostructures of the quasi-two-dimensional canted antiferromagnet La$_2$CuO$_4$ and ferromagnetic (La,Sr)MnO$_3$ synthesized by ozone-assisted molecular beam epitaxy. The magnitude of this effect can be controlled via the doping level of the cuprate layers. Canted antiferromagnetism of layered oxides is thus a new and potentially powerful source of uniaxial anisotropy in magnetic devices.
In this paper, we have found a family of intermetallic compounds YMn12-xFex (x = 6.6-8.8) showing a bulk form of tunable giant exchange bias effect which arises from global interactions among ferromagnetic (FM) and antiferromagnetic (AFM) sublattices
The exchange bias (EB) in LaMn_{0.7}Fe_{0.3}O_3 is observed by the negative shift and training effect of the hysteresis loops, while the sample was cooled in external magnetic field. The analysis of cooling field dependence of EB gives the size of th
The interplay of symmetry and quenched disorder leads to some of the most fundamentally interesting and technologically important properties of correlated materials. It also poses the most vexing of theoretical challenges. Nowhere is this more appare
Exchange bias has been studied in a series of La2/3Ca1/3MnO3 / La1/3Ca2/3MnO3 bilayers grown on (001) SrTiO3 substrates by ozone-assisted molecular beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high-
Tailoring spin-orbit interactions and Coulomb repulsion are the key features to observe exotic physical phenomena such as magnetic anisotropy and topological spin texture at oxide interfaces. Our study proposes a novel platform for engineering the ma