ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange bias with Fe substitution in LaMnO_3

179   0   0.0 ( 0 )
 نشر من قبل Subham Majumdar
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exchange bias (EB) in LaMn_{0.7}Fe_{0.3}O_3 is observed by the negative shift and training effect of the hysteresis loops, while the sample was cooled in external magnetic field. The analysis of cooling field dependence of EB gives the size of the ferromagnetic (FM) cluster ~ 25 Angstrom, where the magnetic anisotropy of FM cluster is found two order of magnitude higher than the FM bulk manganites. We propose that the nanoscale FM clusters are embedded in the glassy magnetic host with EB at the FM/glassy magnetic interface.



قيم البحث

اقرأ أيضاً

The exchange bias effect is an essential component of magnetic memory and spintronic devices. Whereas recent research has shown that anisotropies perpendicular to the device plane provide superior stability against thermal noise, it has proven remark ably difficult to realize perpendicular exchange bias in thin-film structures. Here we demonstrate a strong perpendicular exchange bias effect in heterostructures of the quasi-two-dimensional canted antiferromagnet La$_2$CuO$_4$ and ferromagnetic (La,Sr)MnO$_3$ synthesized by ozone-assisted molecular beam epitaxy. The magnitude of this effect can be controlled via the doping level of the cuprate layers. Canted antiferromagnetism of layered oxides is thus a new and potentially powerful source of uniaxial anisotropy in magnetic devices.
Exchange bias phenomenon is generally ascribed to the exchange coupling at the interfaces between ferromagnetic and antiferromagnetic layers. Here, we propose a bulk form of exchange bias in a single-phase magnet where the coupling between two magnet ic sublattices induces a significant shift of the coercive field after a field cooling. Our experiments in a complicated magnet YbFe2O4 demonstrate a giant exchange bias at low temperature when the coupling between the Yb3+ and Fe2+/Fe3+ sublattices take places. The cooling magnetic field dependence and the training effect of exchange bias are consistent with our model. In strong contrast to conventional interfacial exchange bias, this bulk form of exchange bias can be huge, reaching the order of a few Tesla.
The modulation of charge density and spin order in (LaMnO$_3$)$_{2n}$/(SrMnO$_3$)$_n$ ($n$=1-4) superlattices is studied via Monte Carlo simulations of the double-exchange model. G-type antiferromagnetic barriers in the SrMnO$_{3}$ regions with low c harge density are found to separate ferromagnetic LaMnO$_{3}$ layers with high charge density. The recently experimentally observed metal-insulator transition with increasing $n$ is reproduced in our studies, and $n=3$ is found to be the critical value.
Exchange bias has been studied in a series of La2/3Ca1/3MnO3 / La1/3Ca2/3MnO3 bilayers grown on (001) SrTiO3 substrates by ozone-assisted molecular beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high- resolution X-ray diffractometry and Z-contrast scanning transmission electron microscopy with electron energy loss spectroscopy. The dependence of exchange bias on the thickness of the antiferromagnetic layer has been investigated. A critical value for the onset of the hysteresis loop shift has been determined. An antiferromagnetic anisotropy constant has been obtained by fitting the results to the generalized Meiklejohn-Bean model.
In this paper, we have found a family of intermetallic compounds YMn12-xFex (x = 6.6-8.8) showing a bulk form of tunable giant exchange bias effect which arises from global interactions among ferromagnetic (FM) and antiferromagnetic (AFM) sublattices but not the interfacial exchange coupling or inhomogeneous magnetic clusters. A giant exchange bias with a loop shift up to 6.1 kOe has been observed in YMn4.4Fe7.6 compound with the strongest competing magnetic interactions. In a narrow temperature range, the exchange bias field shows a sudden switching off whereas the coercivity shows a sudden switching on with increasing temperature. This unique feature indicates that the inter-sublattice exchange coupling is highly homogenous, which can be perfectly interperated by our theoretical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا