ﻻ يوجد ملخص باللغة العربية
We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifolds. Furthermore, we prove some vanishing and non-vanishing results and we highlight that the invariants may be used to distinguish different foliations on diffeomorphic manifolds.
The moduli space of stable pairs on a local surface $X=K_S$ is in general non-compact. The action of $mathbb{C}^*$ on the fibres of $X$ induces an action on the moduli space and the stable pair invariants of $X$ are defined by the virtual localizatio
A leafwise Hodge decomposition was proved by Sanguiao for Riemannian foliations of bounded geometry. Its proof is explained again in terms of our study of bounded geometry for Riemannian foliations. It is used to associate smoothing operators to foli
We introduce a new class of perturbations of the Seiberg-Witten equations. Our perturbations offer flexibility in the way the Seiberg-Witten invariants are constructed and also shed a new light to LeBruns curvature inequalities.
In this article, we consider a gauge-theoretic equation on compact symplectic 6-manifolds, which forms an elliptic system after gauge fixing. This can be thought of as a higher-dimensional analogue of the Seiberg-Witten equation. By using the virtual
Every open manifold L of dimension greater than one has complete Riemannian metrics g with bounded geometry such that (L,g) is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometr