ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable pair invariants of surfaces and Seiberg-Witten invariants

75   0   0.0 ( 0 )
 نشر من قبل Martijn Kool
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف M. Kool




اسأل ChatGPT حول البحث

The moduli space of stable pairs on a local surface $X=K_S$ is in general non-compact. The action of $mathbb{C}^*$ on the fibres of $X$ induces an action on the moduli space and the stable pair invariants of $X$ are defined by the virtual localization formula. We study the contribution to these invariants of stable pairs (scheme theoretically) supported in the zero section $S subset X$. Sometimes there are no other contributions, e.g. when the curve class $beta$ is irreducible. We relate these surface stable pair invariants to the Poincare invariants of Durr-Kabanov-Okonek. The latter are equal to the Seiberg-Witten invariants of $S$ by work of Durr-Kabanov-Okonek and Chang-Kiem. We give two applications of our result. (1) For irreducible curve classes the GW/PT correspondence for $X = K_S$ implies Taubes GW/SW correspondence for $S$. (2) When $p_g(S) = 0$, the difference of surface stable pair invariants in class $beta$ and $K_S - beta$ is a universal topological expression.

قيم البحث

اقرأ أيضاً

We propose a definition of Vafa-Witten invariants counting semistable Higgs pairs on a polarised surface. We use virtual localisation applied to Mochizuki/Joyce-Song pairs. For $K_Sle0$ we expect our definition coincides with an alternative definit ion using weighted Euler characteristics. We prove this for deg $K_S<0$ here, and it is proved for $S$ a K3 surface in cite{MT}. For K3 surfaces we calculate the invariants in terms of modular forms which generalise and prove conjectures of Vafa and Witten.
123 - S. Katz , A. Klemm , 2014
For a K3 surface S, we study motivic invariants of stable pairs moduli spaces associated to 3-fold thickenings of S. We conjecture suitable deformation and divisibility invariances for the Betti realization. Our conjectures, together with earlier cal culations of Kawai-Yoshioka, imply a full determination of the theory in terms of the Hodge numbers of the Hilbert schemes of points of S. The work may be viewed as the third in a sequence of formulas starting with Yau-Zaslow and Katz-Klemm-Vafa (each recovering the former). Numerical data suggest the motivic invariants are linked to the Mathieu M_24 moonshine phenomena. The KKV formula and the Pairs/Noether-Lefschetz correspondence together determine the BPS counts of K3-fibered Calabi-Yau 3-folds in fiber classes in terms of modular forms. We propose a framework for a refined P/NL correspondence for the motivic invariants of K3-fibered CY 3-folds. For the STU model, a complete conjecture is presented.
We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifold s. Furthermore, we prove some vanishing and non-vanishing results and we highlight that the invariants may be used to distinguish different foliations on diffeomorphic manifolds.
We prove a nilpotency theorem for the Bauer-Furuta stable homotopy Seiberg-Witten invariants for smooth closed 4-manifolds with trivial first Betti number.
We define the BPS invariants of Gopakumar-Vafa in the case of irreducible curve classes on Calabi-Yau 3-folds. The main tools are the theory of stable pairs in the derived category and Behrends constructible function approach to the virtual class. We prove that for irreducible classes the stable pairs generating function satisfies the strong BPS rationality conjectures. We define the contribution of each curve to the BPS invariants. A curve $C$ only contributes to the BPS invariants in genera lying between the geometric genus and arithmetic genus of $C$. Complete formulae are derived for nonsingular and nodal curves. A discussion of primitive classes on K3 surfaces from the point of view of stable pairs is given in the Appendix via calculations of Kawai-Yoshioka. A proof of the Yau-Zaslow formula for rational curve counts is obtained. A connection is made to the Katz-Klemm-Vafa formula for BPS counts in all genera.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا