ﻻ يوجد ملخص باللغة العربية
In this article, we consider a gauge-theoretic equation on compact symplectic 6-manifolds, which forms an elliptic system after gauge fixing. This can be thought of as a higher-dimensional analogue of the Seiberg-Witten equation. By using the virtual neighbourhood method by Ruan, we define an integer-valued invariant, a 6-dimensional Seiberg-Witten invariant, from the moduli space of solutions to the equations, assuming that the moduli space is compact; and it has no reducible solutions. We prove that the moduli spaces are compact if the underlying manifold is a compact Kahler threefold. We then compute the integers in some cases.
We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifold
We introduce a new class of perturbations of the Seiberg-Witten equations. Our perturbations offer flexibility in the way the Seiberg-Witten invariants are constructed and also shed a new light to LeBruns curvature inequalities.
In this paper, we prove that any $C^{1}$-regular Hamiltonian stationary Lagrangian submanifold in a symplectic manifold is smooth. More broadly, we develop a regularity theory for a class of fourth order nonlinear elliptic equations with two distribu
We prove a Freed-Uhlenbeck style generic smoothness theorem for the moduli space of solutions to the Vafa--Witten equations on a closed symplectic four-manifold by using a method developed by Feehan for the study of the $PU(2)$-monopole equations on
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-