ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamics in 1+1 dimensions from Maxwell-Chern-Simons theory in AdS_3

234   0   0.0 ( 0 )
 نشر من قبل Mitsutoshi Fujita
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this presentation we review our work on Abelian Maxwell-Chern-Simons theory in three-dimensional AdS black brane backgrounds, with both integer and non-integer Chern-Simons coupling. Such theories can be derived from several string theory constructions, and we found exact solutions in the low frequency, low momentum limit (omega, k << T, the hydrodynamic limit). Our results are translated into correlation functions of vector operators in the dual strongly coupled 1+1-dimensional quantum field theory with a chiral anomaly at non-zero temperature T, via the holographic correspondence. The applicability of the hydrodynamic limit is discussed, together with the comparison between an exact field theoretic computation and the found holographic correlation functions in the conformal case.



قيم البحث

اقرأ أيضاً

270 - O.F. Dayi 2003
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der ived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.
We define and discuss classical and quantum gravity in 2+1 dimensions in the Galilean limit. Although there are no Newtonian forces between massive objects in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on the topology of spacetime there are typically finitely many topological degrees of freedom as well as topological interactions of Aharonov-Bohm type between massive objects. In order to capture these topological aspects we consider a two-fold central extension of the Galilei group whose Lie algebra possesses an invariant and non-degenerate inner product. Using this inner product we define Galilean gravity as a Chern-Simons theory of the doubly-extended Galilei group. The particular extension of the Galilei group we consider is the classical double of a much studied group, the extended homogeneous Galilei group, which is also often called Nappi-Witten group. We exhibit the Poisson-Lie structure of the doubly extended Galilei group, and quantise the Chern-Simons theory using a Hamiltonian approach. Many aspects of the quantum theory are determined by the quantum double of the extended homogenous Galilei group, or Galilei double for short. We study the representation theory of the Galilei double, explain how associated braid group representations account for the topological interactions in the theory, and briefly comment on an associated non-commutative Galilean spacetime.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
We study the analytical structure of the fermion propagator in planar quantum electrodynamics coupled to a Chern-Simons term within a four-component spinor formalism. The dynamical generation of parity-preserving and parity-violating fermion mass ter ms is considered, through the solution of the corresponding Schwinger-Dyson equation for the fermion propagator at leading order of the 1/N approximation in Landau gauge. The theory undergoes a first order phase transition toward chiral symmetry restoration when the Chern-Simons coefficient $theta$ reaches a critical value which depends upon the number of fermion families considered. Parity-violating masses, however, are generated for arbitrarily large values of the said coefficient. On the confinement scenario, complete charge screening --characteristic of the 1/N approximation-- is observed in the entire $(N,theta)$-plane through the local and global properties of the vector part of the fermion propagator.
195 - Amit Giveon , David Kutasov 2008
We argue that N=2 supersymmetric Chern-Simons theories exhibit a strong-weak coupling Seiberg-type duality. We also discuss supersymmetry breaking in these theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا