ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Dynamics in the Magnetic Chains Arrays of Sr14Cu24O41: a Neutron Inelastic scattering Investigation

53   0   0.0 ( 0 )
 نشر من قبل Boucher Jean-Paul
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Below about 150 K, the spin arrangement in the chain arrays of Sr14Cu24O41 is shown to develop in two dimensions (2D). Both the correlations and the dispersion of the observed elementary excitations agree well with a model of interacting dimers. Along the chains, the intra- and inter-dimer distances are equal to 2 and about 3 times the distance (c) between neighboring Cu ions. While the intra-dimer coupling is J about 10 meV, the inter-dimer couplings along and between the chains are of comparable strenght, J// about -1.1 meV and Jperp about 1.7 meV, respectively. This remarkable 2D arrangement satisfies the formal Cu valence of the undoped compound. Our data suggest also that it is associated with a relative sliding of one chain with respect to the next one, which, as T decreases, develops in the chain direction. A qualitative analysis shows that nearest inter-dimer spin correlations are ferromagnetic, which, in such a 2D structure, could well result from frustration effects.



قيم البحث

اقرأ أيضاً

459 - S. Hayashida , M. Soda , S. Itoh 2015
We performed inelastic neutron scattering measurements on single crystals of NdFe$_{3}$($^{11}$BO$_{3}$)$_{4}$ to explore the magnetic excitations, to establish the underlying Hamiltonian, and to reveal the detailed nature of hybridization between th e 4$f$ and 3$d$ magnetism. The observed spectra exhibiting a couple of key features, i.e., anti-crossing of Nd- and Fe-excitations and anisotropy gap at the antiferromagnetic zone center, are explained by the magnetic model including spin interaction in the framework of weakly-coupled Fe$^{3+}$ chains, interaction between the Fe$^{3+}$ and Nd$^{3+}$ moments, and single-ion anisotropy derived from Nd$^{3+}$ crystal field. The combination of the measurements and calculations reveals that the hybridization between 4$f$ and 3$d$ magnetism propagates the local magnetic anisotropy of the Nd$^{3+}$ ion to the Fe$^{3+}$ network, resulting in the bulk structure of multiferroics.
We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our appro ach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground state degeneracy on the torus signalling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.
We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.
We report spin-polarized inelastic neutron scattering of the dynamical structure factor of the conical magnetic helix in the cubic chiral magnet MnSi. We find that the spectral weight of spin-flip scattering processes is concentrated on single branch es for wavevector transfer parallel to the helix axis as inferred from well-defined peaks in the neutron spectra. In contrast, for wavevector transfers perpendicular to the helix the spectral weight is distributed among different branches of the magnon band structure as reflected in broader features of the spectra. Taking into account the effects of instrumental resolution, our experimental results are in excellent quantitative agreement with parameter-free theoretical predictions. Whereas the dispersion of the spin waves in MnSi appears to be approximately reciprocal at low energies and small applied fields, the associated spin-resolved spectral weight displays a pronounced non-reciprocity that implies a distinct non-reciprocal response in the limit of vanishing uniform magnetization at zero magnetic field.
We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local -moment J_1-J2 model implies very different in-plane nearest-neighbor exchange parameters along the $a$ and $b$ directions, both in the orthorhombic and tetragonal phases. However, the spectrum calculated from the J1-J2 model deviates significantly from our data. We show that the qualitative features that cannot be described by the J1-J2 model are readily explained by calculations from a 5-band itinerant mean-field model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا