ﻻ يوجد ملخص باللغة العربية
The frustrated pyrochlore antiferromagnet Gd$_{2}$Ti$_{2}$O$_{7}$ has an unusual partially-ordered magnetic structure at the lowest measurable temperatures. This structure is currently believed to involve four magnetic propagation vectors $mathbf{k}in langle frac{1}{2} frac{1}{2} frac{1}{2} rangle^*$ in a cubic 4-$mathbf{k}$ structure, based on analysis of magnetic diffuse-scattering data [J. Phys.: Condens. Matter 16, L321 (2004)]. Here, we present three pieces of evidence against the 4-$mathbf{k}$ structure. First, we report single-crystal neutron-diffraction measurements as a function of applied magnetic field, which are consistent with the selective field-induced population of non-cubic magnetic domains. Second, we present evidence from high-resolution powder neutron-diffraction measurements that rhombohedral strains exist within magnetic domains, which may be generated by magneto-elastic coupling only for the alternative 1-$mathbf{k}$ structure. Finally, we show that the argument previously used to rule out the 1-$mathbf{k}$ structure is flawed, and demonstrate that magnetic diffuse-scattering data can actually be fitted quantitatively by a 1-$mathbf{k}$ structure in which spin fluctuations on ordered and disordered magnetic sites are strongly coupled. Our results provide an experimental foundation on which to base theoretical descriptions of partially-ordered states.
Partially-ordered magnets are distinct from both spin liquids and conventional ordered magnets because order and disorder coexist in the same magnetic phase. Here, we determine the nature of partial order in the canonical frustrated pyrochlore antife
The effect of chemical substitution on the ground state of the geometrically frustrated antiferromagnet CsCrF$_4$ has been investigated through a neutron powder diffraction experiment. Magnetic Fe-substituted CsCr$_{0.94}$Fe$_{0.06}$F$_{4}$ and nonma
We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spi
The geometrically frustrated double perovskite Ba2YRuO6 has magnetic 4d3 Ru5+ ions decorating an undistorted face-centered cubic (FCC) lattice. This material has been previously reported to exhibit commensurate long-range antiferromagnetic order belo
By means of high-resolution ultrasonic velocity measurements, as a function of temperature and magnetic field, the nature of the different low temperatures magnetic phase transitions observed for the quasi-one-dimensional compound CsNiCl3 is establis