ﻻ يوجد ملخص باللغة العربية
The geometrically frustrated double perovskite Ba2YRuO6 has magnetic 4d3 Ru5+ ions decorating an undistorted face-centered cubic (FCC) lattice. This material has been previously reported to exhibit commensurate long-range antiferromagnetic order below T_N = 36K, a factor f = 15 times lower than its Curie-Weiss temperature Theta_CW = -522 K, and purported short-range order to T* = 47K. We report new time-of-flight neutron spectroscopy of Ba2YRuO6 which shows the development of a 5 meV spin gap in the vicinity of the [100] magnetic ordering wavevector below T_N = 36K, with the transition to long-range order occurring at T* = 47K. We also report spin waves extending to 14 meV, a surprisingly small bandwidth in light of the large Theta_CW. We compare the spin gap and bandwidth to relevant neutron studies of the isostructural 4d1 material Ba2YMoO6,and discuss the results in the framework of relatively strong spin-orbit coupling expected in 4d magnetic systems.
We report muSR experiments on Mg{x}Cu{4-x}(OH)6Cl2 with x sim 1, a new material isostructural to Herbertsmithite exhibiting regular kagome planes of spin 1/2 (Cu^{2+}), and therefore a candidate for a spin liquid ground state. We evidence the absence
The frustrated pyrochlore antiferromagnet Gd$_{2}$Ti$_{2}$O$_{7}$ has an unusual partially-ordered magnetic structure at the lowest measurable temperatures. This structure is currently believed to involve four magnetic propagation vectors $mathbf{k}i
Partially-ordered magnets are distinct from both spin liquids and conventional ordered magnets because order and disorder coexist in the same magnetic phase. Here, we determine the nature of partial order in the canonical frustrated pyrochlore antife
Cs2CuCl4 is known to possess a quantum spin liquid phase with antiferromagnetic interaction below 2.8 K. We report the observation of a new metastable magnetic phase of the triangular frustrated quantum spin system Cs2CuCl4 induced by the application
Spin wave dispersion in the frustrated fcc type-III antiferromagnet MnS$_2$ has been determined by inelastic neutron scattering using a triple-axis spectrometer. Existence of multiple spin wave branches, with significant separation between high-energ