ﻻ يوجد ملخص باللغة العربية
The effect of chemical substitution on the ground state of the geometrically frustrated antiferromagnet CsCrF$_4$ has been investigated through a neutron powder diffraction experiment. Magnetic Fe-substituted CsCr$_{0.94}$Fe$_{0.06}$F$_{4}$ and nonmagnetic Al-substituted CsCr$_{0.98}$Al$_{0.02}$F$_{4}$ samples are measured, and magnetic Bragg peaks are clearly observed in both samples. Magnetic structure analysis revealed a 120$^{circ}$ structure having a magnetic propagation vector $mathbf{k}_{rm mag}=(0,0,1/2)$ in CsCr$_{0.94}$Fe$_{0.06}$F$_{4}$. For CsCr$_{0.98}$Al$_{0.02}$F$_{4}$, a quasi-120$^{circ}$ structure having $mathbf{k}_{rm mag}=(1/2,0,1/2)$ is formed. It is notable that the identified magnetic structure in CsCr$_{0.94}$Fe$_{0.06}$F$_{4}$ belongs to a different phase of ground states from those in CsCr$_{0.98}$Al$_{0.02}$F$_{4}$ and the parent CsCrF$_{4}$. These results suggest that the Fe-substitution strongly influences the ground state of CsCrF$_{4}$.
The frustrated pyrochlore antiferromagnet Gd$_{2}$Ti$_{2}$O$_{7}$ has an unusual partially-ordered magnetic structure at the lowest measurable temperatures. This structure is currently believed to involve four magnetic propagation vectors $mathbf{k}i
Partially-ordered magnets are distinct from both spin liquids and conventional ordered magnets because order and disorder coexist in the same magnetic phase. Here, we determine the nature of partial order in the canonical frustrated pyrochlore antife
We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spi
By means of high-resolution ultrasonic velocity measurements, as a function of temperature and magnetic field, the nature of the different low temperatures magnetic phase transitions observed for the quasi-one-dimensional compound CsNiCl3 is establis
Barlowite, Cu$_{4}$(OH)$_{6}$FBr, has attracted much attention as the parent compound of a new series of quantum spin liquid candidates, Zn$_{x}$Cu$_{4-x}$(OH)$_{6}$FBr. While it is known to undergo a magnetic phase transition to a long-range ordered