ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of van-der-Waals interaction by atom trajectory imaging

125   0   0.0 ( 0 )
 نشر من قبل Nithiwadee Thaicharoen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the repulsive van der Waals interaction of cold rubidium $70S_{1/2}$ Rydberg atoms by analysis of time-delayed pair correlation functions. After excitation, Rydberg atoms are allowed to accelerate under the influence of the van der Waals force. Their positions are then measured using a single-atom imaging technique. From the average pair correlation function of the atom positions we obtain the initial atom-pair separation and the terminal velocity, which yield the van der Waals interaction coefficient $C_{6}$. The measured $C_{6}$ value agrees well with calculations. The experimental method has been validated by simulations. The data hint at anisotropy in the overall expansion, caused by the shape of the excitation volume. Our measurement implies that the interacting entities are individual Rydberg atoms, not groups of atoms that coherently share a Rydberg excitation.



قيم البحث

اقرأ أيضاً

We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with inter-particle distances of around 5 {mu}m are created b y first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.
In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly unive rsal relationship is violated for electromagnetic vacuum forces such as the generalized van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in general relativity. We propose and analyse an experiment to probe the van der Waals anomaly with ultracold atoms. The experiment may not only test an unusual phenomenon of quantum forces, but also an analogue of dark energy, shedding light where nothing is known empirically.
76 - Manuel Donaire 2016
I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by the authors of Refs.[1-3], and for which precedent approaches have given conflicting results. In the first place, I discuss to what extent Refs.[1], [2] and [3] provide equivalent results. I show that the phase-shift rate of the two-atom wave function computed in Ref.[1], the van der Waals potential of the excited atom in Ref.[2] and the level shift of the excited atom in Ref.[3] possess equivalent expressions in the quasistationary approximation. In addition, I show that the level shift of the ground state atom computed in Ref.[3] is equivalent to its van der Waals potential. A diagrammatic representation of all those quantities is provided. The equivalences among them are however not generic. In particular, it is found that for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation of the interactions, I conclude in agreement with Refs.[1,3] that they refer to different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics of the potentials are analyzed. In contrast to Ref.[3], the oscillatory versus monotonic spatial forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the excitation transfer involved.
Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the inter layer interactions. In this topical review, we cover fabrication and characterization of van der Waals heterosructures with a focus on heterobilayers made of monolayers of semiconducting transition metal dichalcogenides. Experimental and theoretical techniques to investigate those heterobilayers are introduced. Most recent findings focusing on different transition metal dichalcogenides heterostructures are presented and possible optical transitions between different valleys, appearance of moire patterns and signatures of moire excitons are discussed. The fascinating and fast growing research on van der Waals hetero-bilayers provide promising insights required for their application as emerging quantum-nano materials.
We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C$_6$H$_5$CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided b eam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within pm5%. By exploiting the different dipole-moment-to-mass (mu/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا