ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-atom interaction energies with one atom in an excited state: van der Waals potentials vs. level shifts

77   0   0.0 ( 0 )
 نشر من قبل Manuel Donaire
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Manuel Donaire




اسأل ChatGPT حول البحث

I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by the authors of Refs.[1-3], and for which precedent approaches have given conflicting results. In the first place, I discuss to what extent Refs.[1], [2] and [3] provide equivalent results. I show that the phase-shift rate of the two-atom wave function computed in Ref.[1], the van der Waals potential of the excited atom in Ref.[2] and the level shift of the excited atom in Ref.[3] possess equivalent expressions in the quasistationary approximation. In addition, I show that the level shift of the ground state atom computed in Ref.[3] is equivalent to its van der Waals potential. A diagrammatic representation of all those quantities is provided. The equivalences among them are however not generic. In particular, it is found that for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation of the interactions, I conclude in agreement with Refs.[1,3] that they refer to different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics of the potentials are analyzed. In contrast to Ref.[3], the oscillatory versus monotonic spatial forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the excitation transfer involved.

قيم البحث

اقرأ أيضاً

Molecular beams of rare gas atoms and D_2 have been diffracted from 100 nm period SiN_x transmission gratings. The relative intensities of the diffraction peaks out to the 8th order depend on the diffracting particle and are interpreted in terms of effective slit widths. These differences have been analyzed by a new theory which accounts for the long-range van der Waals -C_3/l^3 interaction of the particles with the walls of the grating bars. The values of the C_3 constant for two different gratings are in good agreement and the results exhibit the expected linear dependence on the dipole polarizability.
We study the repulsive van der Waals interaction of cold rubidium $70S_{1/2}$ Rydberg atoms by analysis of time-delayed pair correlation functions. After excitation, Rydberg atoms are allowed to accelerate under the influence of the van der Waals for ce. Their positions are then measured using a single-atom imaging technique. From the average pair correlation function of the atom positions we obtain the initial atom-pair separation and the terminal velocity, which yield the van der Waals interaction coefficient $C_{6}$. The measured $C_{6}$ value agrees well with calculations. The experimental method has been validated by simulations. The data hint at anisotropy in the overall expansion, caused by the shape of the excitation volume. Our measurement implies that the interacting entities are individual Rydberg atoms, not groups of atoms that coherently share a Rydberg excitation.
Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron unce rtainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on $^{39}$K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions.
The universal aspects of atom-dimer elastic collisions are investigated within the framework of Faddeev equations. The two-body interactions between the neutral atoms are approximated by the separable potential approach. Our analysis considers a pure van der Waals potential tail as well as soft-core van der Waals interactions permitting us in this manner to address the universally general features of atom-dimer resonant spectra. In particular, we show that the atom-dimer resonances are solely associated with the {it excited} Efimov states. Furthermore, the positions of the corresponding resonances for a soft-core potentials with more than 5 bound states are in good agreement with the corresponding results from an infinitely deep pure van der Waals tail potential.
Single quantum emitters like atoms are well-known as non-classical light sources which can produce photons one by one at given times, with reduced intensity noise. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability for a single atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or phase fluctuations. It has long been foreseen, though, that such squeezing would be at least an order of magnitude more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, several orders of magnitude larger than for usual macroscopic media. This produces observable quadrature squeezing with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا