ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant single and multi-photon coherent transitions in a detuned regime

95   0   0.0 ( 0 )
 نشر من قبل Sylvain Bertaina
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed quantum manipulations of the multi-level spin system S=5/2 of a Mn$^{2+}$ ion, by means of a two-tone pulse drive. The detuning between the excitation and readout radio frequency pulses allows one to select the number of photons involved in a Rabi oscillation as well as increase the frequency of this nutation. Thus detuning can lead to a resonant multi-photon process. Our analytical model for a two-photon process as well as a numerical generalization fit well the experimental findings, with implications in the use of multi-level spin systems as tunable solid state qubits.

قيم البحث

اقرأ أيضاً

We propose the use of nanostructured photonic nanocavities made of second-order nonlinear materials as prospective passive devices to generate strongly sub-Poissonian light via single-photon blockade of an input coherent field. The simplest scheme is based on the requirement that the nanocavity be doubly resonant, i.e. possess cavity modes with good spatial overlap at both the fundamental and second-harmonic frequencies. We discuss feasibility of this scheme with state-of-the art nanofabrication technology, and the possibility to use it as a passive single-photon source on-demand.
Coherent generation of indistinguishable single photons is crucial for many quantum communication and processing protocols. Solid-state realizations of two-level atomic transitions or three-level spin-$Lambda$ systems offer significant advantages ove r their atomic counterparts for this purpose, albeit decoherence can arise due to environmental couplings. One popular approach to mitigate dephasing is to operate in the weak excitation limit, where excited state population is minimal and coherently scattered photons dominate over incoherent emission. Here we probe the coherence of photons produced using two-level and spin-$Lambda$ solid-state systems. We observe that the coupling of the atomic-like transitions to the vibronic transitions of the crystal lattice is independent of driving strength and detuning. We apply a polaron master equation to capture the non-Markovian dynamics of the ground state vibrational manifolds. These results provide insight into the fundamental limitations for photon coherence from solid-state quantum emitters, with the consequence that deterministic single-shot quantum protocols are impossible and inherently probabilistic approaches must be embraced.
74 - X. Mi , M. Benito , S. Putz 2017
Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins h as been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and all-to-all qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2pi) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons.
The on-chip generation of non-classical states of light is a key-requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics, such non-classical light can be generated from self-assembled quantum dots strongly coupl ed to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon-tunnelling) or diminish (photon-blockade) the probability for a second photon to enter the cavity. Here, we demonstrate that detuning the cavity and QD resonances enables the generation of high-purity non-classical light from strongly coupled systems. For specific detunings we show that not only the purity but also the efficiency of single-photon generation increases significantly, making high-quality single-photon generation by photon-blockade possible with current state-of-the-art samples.
69 - X. Liu , H. Kumano , H. Nakajima 2014
We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a $g^{(2)}$(0) value of 0.008 is achieved with $pi$-pulse quasi-resonant excitation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا