ترغب بنشر مسار تعليمي؟ اضغط هنا

A Coherent Spin-Photon Interface in Silicon

75   0   0.0 ( 0 )
 نشر من قبل Jason Petta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins has been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and all-to-all qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2pi) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons.

قيم البحث

اقرأ أيضاً

151 - J. Yoneda , W. Huang , M. Feng 2020
A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently transporting qubits across the chip, allowing connectivity beyond immediate neighbours. Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon. We observe qubit precession in the inter-site tunnelling regime and assess the impact of qubit transport using Ramsey interferometry and quantum state tomography techniques. We report a polarization transfer fidelity of 99.97% and an average coherent transfer fidelity of 99.4%. Our results provide key elements for high-fidelity, on-chip quantum information distribution, as long envisaged, reinforcing the scaling prospects of silicon-based spin qubits.
Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosec ond time resolution projects the quantum dot spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of resonantly scattered photons reveals information about electron spin dynamics. High-fidelity fast spin-state initialization heralded by a single photon enables the realization of quantum information processing tasks such as non-deterministic distant spin entanglement. Given that we could suppress the measurement back-action to well below the natural spin-flip rate, realization of a quantum non-demolition measurement of a single spin could be achieved by increasing the fluorescence collection efficiency by a factor exceeding 20 using a photonic nanostructure.
Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas and d emonstrations of quantum information processing. Scaling up these ideas requires controlling individual nuclei, which can be detected when coupled to an electron. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods relied upon transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects the nuclear coherence. Here we demonstrate the coherent quantum control of a single antimony (spin-7/2) nucleus, using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction, in the presence of lattice strain, results in coherent nuclear spin transitions. The spin dephasing time, 0.1 seconds, surpasses by orders of magnitude those obtained via methods that require a coupled electron spin for electrical drive. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots could pave the way to scalable nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.
Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to iden tify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.
Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties - a different and easily tuneable level splitting, faster control, and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and probe its potential for the use as quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, by frequency modulating the driving field, or by a simple detuning pulse. We measure coherence times of $T_{2rho}^*=2.4$ ms and $T_{2rho}^{rm Hahn}=9$ ms, one order of magnitude longer than those of the undressed qubit. Furthermore, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا