ﻻ يوجد ملخص باللغة العربية
We introduce Integral Curve Coordinates, which identify each point in a bounded domain with a parameter along an integral curve of the gradient of a function $f$ on that domain; suitable functions have exactly one critical point, a maximum, in the domain, and the gradient of the function on the boundary points inward. Because every integral curve intersects the boundary exactly once, Integral Curve Coordinates provide a natural bijective mapping from one domain to another given a bijection of the boundary. Our approach can be applied to shapes in any dimension, provided that the boundary of the shape (or cage) is topologically equivalent to an $n$-sphere. We present a simple algorithm for generating a suitable function space for $f$ in any dimension. We demonstrate our approach in 2D and describe a practical (simple and robust) algorithm for tracing integral curves on a (piecewise-linear) triangulated regular grid.
In this paper, we prove $L^p$ decay estimates for multilinear oscillatory integrals in $mathbb{R}^2$, establishing sharpness through a scaling argument. The result in this paper is a generalization of the previous work by Gressman and Xiao (2016).
Let $R^{n+1, n}$ be the vector space $R^{2n+1}$ equipped with the bilinear form $(X,Y)=X^t C_n Y$ of index $n$, where $C_n= sum_{i=1}^{2n+1} (-1)^{n+i-1} e_{i, 2n+2-i}$. A smooth $gamma: Rto R^{n+1,n}$ is {it isotropic} if $gamma, gamma_x, ldots, gam
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauders fixed point theorem.
Wild sets in $mathbb{R}^n$ can be tamed through the use of various representations though sometimes this taming removes features considered important. Finding the wildest sets for which it is still true that the representations faithfully inform us a