ترغب بنشر مسار تعليمي؟ اضغط هنا

Cubical Covers of Sets in $mathbb{R}^n$

177   0   0.0 ( 0 )
 نشر من قبل Laramie Paxton
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Wild sets in $mathbb{R}^n$ can be tamed through the use of various representations though sometimes this taming removes features considered important. Finding the wildest sets for which it is still true that the representations faithfully inform us about the original set is the focus of this rather playful, expository paper that we hope will stimulate interest in cubical coverings as well as the other two ideas we explore briefly: Jones $beta$ numbers and varifolds from geometric measure theory.



قيم البحث

اقرأ أيضاً

Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
A recent result by Parcet and Rogers is that finite order lacunarity characterizes the boundedness of the maximal averaging operator associated to an infinite set of directions in $mathbb{R}^n$. Their proof is based on geometric-combinatorial coverin gs of fat hyperplanes by two-dimensional wedges. Seminal results by Nagel-Stein-Wainger relied on geometric coverings of n-dimensional nature. In this article we find the sharp cardinality estimate for singular integrals along finite subsets of finite order lacunary sets in all dimensions. Previous results only covered the special case of the directional Hilbert transform in dimensions two and three. The proof is new in all dimensions and relies, among other ideas, on a precise covering of the n-dimensional Nagel-Stein-Wainger cone by two-dimensional Parcet-Rogers wedges.
In this paper, we prove $L^p$ decay estimates for multilinear oscillatory integrals in $mathbb{R}^2$, establishing sharpness through a scaling argument. The result in this paper is a generalization of the previous work by Gressman and Xiao (2016).
391 - Fushuai Jiang 2019
Let $ f $ be a real-valued function on a compact subset in $ mathbb{R}^n $. We show how to decide if $ f $ extends to a nonnegative and $ C^1 $ function on $ mathbb{R}^n $. There has been no known result for nonnegative $ C^m $ extension from a gener al compact set $ E $ when $ m > 0 $. The nonnegative extension problem for $ m geq 2 $ remains open.
We show that, if $bin L^1(0,T;L^1_{mathrm{loc}}(mathbb{R}))$ has spatial derivative in the John-Nirenberg space $mathrm{BMO}(mathbb{R})$, then it generalizes a unique flow $phi(t,cdot)$ which has an $A_infty(mathbb R)$ density for each time $tin [0,T ]$. Our condition on the map $b$ is optimal and we also get a sharp quantitative estimate for the density. As a natural application we establish a well-posedness for the Cauchy problem of the transport equation in $mathrm{BMO}(mathbb R)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا