ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental construction of a W-superposition state and its equivalence to the GHZ state under local filtration

38   0   0.0 ( 0 )
 نشر من قبل Arvind
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally construct a novel three-qubit entangled W-superposition ($rm W bar{rm W}$) state on an NMR quantum information processor. We give a measurement-based filtration protocol for the invertible local operation (ILO) that converts the $rm W bar{rm W}$ state to the GHZ state, using a register of three ancilla qubits. Further we implement an experimental protocol to reconstruct full information about the three-party $rm W bar{rm W}$ state using only two-party reduced density matrices. An intriguing fact unearthed recently is that the $rm W bar{rm W}$ state which is equivalent to the GHZ state under ILO, is in fact reconstructible from its two-party reduced density matrices, unlike the GHZ state. We hence demonstrate that although the $rm W bar{rm W}$ state is interconvertible with the GHZ state, it stores entanglement very differently.

قيم البحث

اقرأ أيضاً

We study the dynamics of four-qubit W state under various noisy environments by solving analytically the master equation in the Lindblad form in which the Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Als o, we investigate the dynamics of the entanglement using the lower bound to the concurrence. It is found that while the entanglement decreases monotonically for Pauli-Z noise, it decays suddenly for other three noises. Moreover, by studying the time evolution of entanglement of various maximally entangled four-qubit states, we indicate that the four-qubit W state is more robust under same-axis Pauli channels. Furthermore, three-qubit W state preserves more entanglement with respect to the four-qubit W state, except for the Pauli-Z noise.
A combination of a finite number of linear independent states forms superposition in a way that cannot be conceived classically. Here, using the tools of resource theory of superposition, we give the conditions for a class of superposition state tran sformations. These conditions strictly depend on the scalar products of the basis states and reduce to the well-known majorization condition for quantum coherence in the limit of orthonormal basis. To further superposition-free transformations of $d$-dimensional systems, we provide superposition-free operators for a deterministic transformation of superposition states. The linear independence of a finite number of basis states requires a relation between the scalar products of these states. With this information in hand, we determine the maximal superposition states which are valid over a certain range of scalar products. Notably, we show that, for $dgeq3$, scalar products of the pure superposition-free states have a greater place in seeking maximally resourceful states. Various explicit examples illustrate our findings.
We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using linear optics, an ancilla photon, and measurem ent. We demonstrate that the filter acts coherently by using it to convert unentangled photon pairs to a path-entangled state. We quantify the degree of entanglement by transforming the path information to polarisation information, applying quantum state tomography we measure a tangle of T=(20+/-9)%.
Recently [Cavalcanti textit{et al.} Nat Commun textbf{6}, 7941 (2015)] proposed a method to certify the presence of entanglement in asymmetric networks, where some users do not have control over the measurements they are performing. Such asymmetry na turally emerges in realistic situtations, such as in cryptographic protocols over quantum networks. Here we implement such semi-device independent techniques to experimentally witness all types of entanglement on a three-qubit photonic W state. Furthermore we analise the amount of genuine randomness that can be certified in this scenario from any bipartition of the three-qubit W state.
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogen eities of the ensemble can be suppressed using the Roos-Moelmer dark state scheme. Fidelities above >90%, presumably limited by excited state decoherence, were achieved. Although not explicitly taken care of in the Roos-Moelmer scheme, it appears that also decoherence due to inhomogeneous broadening on the hyperfine transition is largely suppressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا