ترغب بنشر مسار تعليمي؟ اضغط هنا

Paneitz operator for metrics near $S^3$

127   0   0.0 ( 0 )
 نشر من قبل Fengbo Hang
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the first and second variation formula for the Greens function poles value of Paneitz operator on the standard three sphere. In particular it is shown that the first variation vanishes and the second variation is nonpositively definite. Moreover, the second variation vanishes only at the direction of conformal deformation. We also introduce a new invariant of the Paneitz operator and illustrate its close relation with the second eigenvalue and Sobolev inequality of Paneitz operator.



قيم البحث

اقرأ أيضاً

97 - Rafe Mazzeo , Xuwen Zhu 2019
We continue our study, initiated in our earlier paper, of Riemann surfaces with constant curvature and isolated conic singularities. Using the machinery developed in that earlier paper of extended configuration families of simple divisors, we study t he existence and deformation theory for spherical conic metrics with some or all of the cone angles greater than $2pi$. Deformations are obstructed precisely when the number $2$ lies in the spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this case, it is possible to find a smooth local moduli space of solutions by allowing the cone points to split. This analytic fact reflects geometric constructions in papers by Mondello and Panov.
175 - Xuezhang Chen 2014
In this paper, we establish that: Suppose a closed Riemannian manifold $(M^n,g_0)$ of dimension $geq 8$ is not locally conformally flat, then the Paneitz-Sobolev constant of $M^n$ has the property that $q(g_0)<q(S^n)$. The analogy of this result was obtained by T. Aubin in 1976 and had been used to solve the Yamabe problem on closed manifolds. As an application, the above result can be used to recover the sequential convergence of the nonlocal Q-curvature flow on closed manifolds recently introduced by Gursky-Malchiodi.
We consider spaces of smooth immersed plane curves (modulo translations and/or rotations), equipped with reparameterization invariant weak Riemannian metrics involving second derivatives. This includes the full $H^2$-metric without zero order terms. We find isometries (called $R$-transforms) from some of these spaces into function spaces with simpler weak Riemannian metrics, and we use this to give explicit formulas for geodesics, geodesic distances, and sectional curvatures. We also show how to utilise the isometries to compute geodesics numerically.
We show that the space of metrics of positive scalar curvature on any 3-manifold is either empty or contractible. Second, we show that the diffeomorphism group of every 3-dimensional spherical space form deformation retracts to its isometry group. Th is proves the Generalized Smale Conjecture. Our argument is independent of Hatchers theorem in the $S^3$ case and in particular it gives a new proof of the $S^3$ case.
We study completeness properties of reparametrization invariant Sobolev metrics of order $nge 2$ on the space of manifold valued open and closed immersed curves. In particular, for several important cases of metrics, we show that Sobolev immersions a re metrically and geodesically complete (thus the geodesic equation is globally well-posed). These results were previously known only for closed curves with values in Euclidean space. For the class constant coefficient Sobolev metrics on open curves, we show that they are metrically incomplete, and that this incompleteness only arises from curves that vanish completely (unlike local failures that occur in lower order metrics).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا