ترغب بنشر مسار تعليمي؟ اضغط هنا

The Paneitz-Sobolev constant of a closed Riemannian manifold and an application to the nonlocal $mathbf{Q}$-curvature flow

165   0   0.0 ( 0 )
 نشر من قبل Xuezhang Chen
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Xuezhang Chen




اسأل ChatGPT حول البحث

In this paper, we establish that: Suppose a closed Riemannian manifold $(M^n,g_0)$ of dimension $geq 8$ is not locally conformally flat, then the Paneitz-Sobolev constant of $M^n$ has the property that $q(g_0)<q(S^n)$. The analogy of this result was obtained by T. Aubin in 1976 and had been used to solve the Yamabe problem on closed manifolds. As an application, the above result can be used to recover the sequential convergence of the nonlocal Q-curvature flow on closed manifolds recently introduced by Gursky-Malchiodi.



قيم البحث

اقرأ أيضاً

212 - Xuezhang Chen 2015
In this paper, we employ a nonlocal $Q$-curvature flow inspired by Gursky-Malchiodis work cite{gur_mal} to solve the prescribed $Q$-curvature problem on a class of closed manifolds: For $n geq 5$, let $(M^n,g_0)$ be a smooth closed manifold, which is not conformally diffeomorphic to the standard sphere, satisfying either Gursky-Malchiodis semipositivity hypotheses: scalar curvature $R_{g_0}>0$ and $Q_{g_0} geq 0$ not identically zero or Hang-Yangs: Yamabe constant $Y(g_0)>0$, Paneitz-Sobolev constant $q(g_0)>0$ and $Q_{g_0} geq 0$ not identically zero. Let $f$ be a smooth positive function on $M^n$ and $x_0$ be some maximum point of $f$. Suppose either (a) $n=5,6,7$ or $(M^n,g_0)$ is locally conformally flat; or (b) $n geq 8$, Weyl tensor at $x_0$ is nonzero. In addition, assume all partial derivatives of $f$ vanish at $x_0$ up to order $n-4$, then there exists a conformal metric $g$ of $g_0$ with its $Q$-curvature $Q_g$ equal to $f$. This result generalizes Escobar-Schoens work [Invent. Math. 1986] on prescribed scalar curvature problem on any locally conformally flat manifolds of positive scalar curvature.
214 - Xiuxiong Chen , Weiyong He 2009
We consider the formation of singularities along the Calabi flow with the assumption of the uniform Sobolev constant. In particular, on Kahler surface we show that any maximal bubble has to be a scalar flat ALE Kahler metric. In some certain classes on toric Fano surface, the Sobolev constant is a priori bounded along the Calabi flow with small Calabi energy. Also we can show in certain case no maximal bubble can form along the flow, it follows that the curvature tensor is uniformly bounded and the flow exists for all time and converges to an extremal metric subsequently. To illustrate our results more clearly, we focus on an example on CP^2 blown up three points at generic position. Our result also implies existence of constant scalar curvature metrics on CP^2 blown up three points at generic position in the Kahler classes where the exceptional divisors have the same area.
144 - Ao Sun , Jinxin Xue 2021
This is a contribution to the program of dynamical approach to mean curvature flow initiated by Colding and Minicozzi. In this paper, we prove two main theorems. The first one is local in nature and the second one is global. In this first result, we pursue the stream of ideas of cite{CM3} and get a slight refinement of their results. We apply the invariant manifold theory from hyperbolic dynamics to study the dynamics close to a closed shrinker that is not a sphere. In the second theorem, we show that if a hypersurface under the rescaled mean curvature flow converges to a closed shrinker that is not a sphere, then a generic perturbation on initial data would make the flow leave a small neighborhood of the shrinker and never come back.
149 - Li Ma 2008
In this note, we study Q-curvature flow on $S^4$ with indefinite nonlinearity. Our result is that the prescribed Q-curvature problem on $S^4$ has a solution provided the prescribed Q-curvature $f$ has its positive part, which possesses non-degenerate critical points such that $Delta_{S^4} f ot=0$ at the saddle points and an extra condition such as a nontrivial degree counting condition.
101 - Xuezhang Chen , Nan Wu 2019
We first present a warped product manifold with boundary to show the non-uniqueness of the positive constant scalar curvature and positive constant boundary mean curvature equation. Next, we construct a smooth counterexample to show that the compactn ess of the set of lower energy solutions to the above equation fails when the dimension of the manifold is not less than $62$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا