ترغب بنشر مسار تعليمي؟ اضغط هنا

Conical metrics on Riemann surfaces, II: spherical metrics

98   0   0.0 ( 0 )
 نشر من قبل Xuwen Zhu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue our study, initiated in our earlier paper, of Riemann surfaces with constant curvature and isolated conic singularities. Using the machinery developed in that earlier paper of extended configuration families of simple divisors, we study the existence and deformation theory for spherical conic metrics with some or all of the cone angles greater than $2pi$. Deformations are obstructed precisely when the number $2$ lies in the spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this case, it is possible to find a smooth local moduli space of solutions by allowing the cone points to split. This analytic fact reflects geometric constructions in papers by Mondello and Panov.



قيم البحث

اقرأ أيضاً

We develop analytical methods for nonlinear Dirac equations. Examples of such equations include Dirac-harmonic maps with curvature term and the equations describing the generalized Weierstrass representation of surfaces in three-manifolds. We provide the key analytical steps, i.e., small energy regularity and removable singularity theorems and energy identities for solutions.
Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic a spects of the resulting Euler-Lagrange equations, culminating in a blow up analysis.
We study completeness properties of reparametrization invariant Sobolev metrics of order $nge 2$ on the space of manifold valued open and closed immersed curves. In particular, for several important cases of metrics, we show that Sobolev immersions a re metrically and geodesically complete (thus the geodesic equation is globally well-posed). These results were previously known only for closed curves with values in Euclidean space. For the class constant coefficient Sobolev metrics on open curves, we show that they are metrically incomplete, and that this incompleteness only arises from curves that vanish completely (unlike local failures that occur in lower order metrics).
The paper is concerned with the maximization of Laplace eigenvalues on surfaces of given volume with a Riemannian metric in a fixed conformal class. A significant progress on this problem has been recently achieved by Nadirashvili-Sire and Petrides u sing related, though different methods. In particular, it was shown that for a given $k$, the maximum of the $k$-th Laplace eigenvalue in a conformal class on a surface is either attained on a metric which is smooth except possibly at a finite number of conical singularities, or it is attained in the limit while a bubble tree is formed on a surface. Geometrically, the bubble tree appearing in this setting can be viewed as a union of touching identical round spheres. We present another proof of this statement, developing the approach proposed by the second author and Y. Sire. As a side result, we provide explicit upper bounds on the topological spectrum of surfaces.
147 - Ved V. Datar 2014
In this note we prove convexity, in the sense of Colding-Naber, of the regular set of solutions to some complex Monge-Ampere equations with conical singularities along simple normal crossing divisors. In particular, any two points in the regular set can be joined by a smooth minimal geodesic lying entirely in the regular set. We show that as a result, the classical theorems of Myers and Bishop-Gromov extend almost verbatim to this singular setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا