ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal behavior of microwave sheath-voltage combination plasma

126   0   0.0 ( 0 )
 نشر من قبل Satyananda Kar
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an oxidized state (OS) at the early time of the microwave plasma and the other is ionized sputter state (ISS) at the later times. Transition of the plasma from OS to ISS, results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions and the density is order 10^11 cm^-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition and higher density plasma (10^12 cm^-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). Optical emission spectroscopy measurements confirm the presence of sputtered Ti ions and Ti neutrals in the ISS.



قيم البحث

اقرأ أيضاً

234 - Y. Bliokh , J. Felsteiner , 2011
It is well known that oscillations at the electron plasma frequency may appear due to instability of the plasma sheath near a positively biased electrode immersed in plasma. This instability is caused by transit-time effects when electrons, collected by this electrode, pass through the sheath. Such oscillations appear as low-power short spikes due to additional ionization of a neutral gas in the electrode vicinity. Herein we present first results obtained when the additional ionization was eliminated. We succeeded to prolong the oscillations during the whole time a positive bias was applied to the electrode. These oscillations could be obtained at much higher frequency than previously reported (tens of GHz compared to few hundreds of MHz) and power of tens of mW. These results in combination with presented theoretical estimations may be useful, e.g., for plasma diagnostics.
The sheath formation in a weakly magnetized collisionless electronegative plasma consisting of electrons, negative and positive ions has been numerically investigated using the hydrodynamic equations. The electrons and negative ions are assumed to fo llow Boltzmann relation. A sheath formation criterion has been analytically derived. The paper focuses on studying the sheath structure by varying the electronegativity. It has been observed that the presence of negative ions has a substantial effect on the sheath structure. The observations made in the present work have profound significance on processing plasmas, especially in the semiconductor industry as well as in fusion studies.
Using direct numerical simulations of three-dimensional magnetohydrodynamic (MHD) turbulence the spatio-temporal behavior of magnetic field fluctuations is analyzed. Cases with relatively small, medium and large values of a mean background magnetic f ield are considered. The (wavenumber) scale dependent time correlation function is directly computed for different simulations, varying the mean magnetic field value. From this correlation function the time decorrelation is computed and compared with different theoretical times, namely, the local non-linear time, the random sweeping time, and the Alfvenic time, the latter being a wave effect. It is observed that time decorrelations are dominated by sweeping effects, and only at large values of the mean magnetic field and for wave vectors mainly aligned with this field time decorrelations are controlled by Alfvenic effects.
An improved description for nonlinear plasma wakefields with phase velocities near the speed of light is presented and compared against fully kinetic particle-in-cell simulations. These wakefields are excited by intense particle beams or lasers pushi ng plasma electrons radially outward, creating an ion bubble surrounded by a sheath of electrons characterized by the source term $S equiv -frac{1}{en_p}(rho-J_z/c)$ where $rho$ and $J_z$ are the charge and axial current densities. Previously, the sheath source term was described phenomenologically with a positive-definite function, resulting in a positive definite wake potential. In reality, the wake potential is negative at the rear of the ion column which is important for self-injection and accurate beam loading models. To account for this, we introduce a multi-sheath model in which the source term, $S$, of the plasma wake can be negative in regions outside the ion bubble. Using this model, we obtain a new expression for the wake potential and a modified differential equation for the bubble radius. Numerical results obtained from these equations are validated against particle-in-cell simulations for unloaded and loaded wakes. The new model provides accurate predictions of the shape and duration of trailing bunch current profiles that flatten plasma wakefields. It is also used to design a trailing bunch for a desired longitudinally varying loaded wakefield. We present beam loading results for laser wakefields and discuss how the model can be improved for laser drivers in future work. Finally, we discuss differences between the predictions of the multi- and single-sheath models for beam loading.
300 - K. Deka , S. Adhikari , R. Moulick 2020
A low-pressure magnetized plasma is studied to find the dependency of sheath properties on ion-neutral collisions in presence of an inhomogeneous magnetic field. A self-consistent one-dimensional two-fluid hydrodynamic model is considered, and the sy stem of equations is solved numerically. The study reveals that the width of the plasma sheath expands and space charge increases with collisions. The ion-neutral collisions and the inhomogeneous magnetic field restrict the ions to move towards the surface. The movement of the ions towards the wall can be controlled by choosing a suitable configuration of the magnetic field and ion-neutral collision frequency. A comparison between two different magnetic field configurations has been presented alongside to differentiate the commonly found scenarios in the field. The outcome of the study is supposed to help in understanding the complex dynamics of ions in plasma confinement and plasma processing of materials. Furthermore, the present work seeks to create a framework for two-fluid modeling of magnetized plasmas with any arbitrary magnetic field profiles. The analysis provided here is supposed to act as a basis for any future work in the respective field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا