ترغب بنشر مسار تعليمي؟ اضغط هنا

On the spatio-temporal behavior of magnetohydrodynamic turbulence in a magnetized plasma

100   0   0.0 ( 0 )
 نشر من قبل Rodrigo Lugones
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using direct numerical simulations of three-dimensional magnetohydrodynamic (MHD) turbulence the spatio-temporal behavior of magnetic field fluctuations is analyzed. Cases with relatively small, medium and large values of a mean background magnetic field are considered. The (wavenumber) scale dependent time correlation function is directly computed for different simulations, varying the mean magnetic field value. From this correlation function the time decorrelation is computed and compared with different theoretical times, namely, the local non-linear time, the random sweeping time, and the Alfvenic time, the latter being a wave effect. It is observed that time decorrelations are dominated by sweeping effects, and only at large values of the mean magnetic field and for wave vectors mainly aligned with this field time decorrelations are controlled by Alfvenic effects.

قيم البحث

اقرأ أيضاً

We study the spatio-temporal behavior of the Elsasser variables describing magnetic and velocity field fluctuations, using direct numerical simulations of three-dimensional magnetohydrodynamic turbulence. We consider cases with relatively small, inte rmediate, and large values of a mean background magnetic field, and with null, small, and high cross-helicity (correlations between the velocity and the magnetic field). Wavenumber-dependent time correlation functions are computed for the different simulations. From these correlation functions, the decorrelation time is computed and compared with different theoretical characteristic times: the local non-linear time, the random-sweeping time, and the Alfvenic time. It is found that decorrelation times are dominated by sweeping effects for low values of the mean magnetic field and for low values of the cross-helicity, while for large values of the background field or of the cross-helicity and for wave vectors sufficiently aligned with the guide field, decorrelation times are controlled by Alfvenic effects. Finally, we observe counter-propagation of Alfvenic fluctuations due to reflections produced by inhomogeneities in the total magnetic field. This effect becomes more prominent in flows with large cross-helicity, strongly modifying the propagation of waves in turbulent magnetohydrodynamic flows.
Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an oxidized state (OS) at the early time of the microwave plasma and the other is ionized sputter state (ISS) at the later times. Transition of the plasma from OS to ISS, results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions and the density is order 10^11 cm^-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition and higher density plasma (10^12 cm^-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). Optical emission spectroscopy measurements confirm the presence of sputtered Ti ions and Ti neutrals in the ISS.
Magnetohydrodynamic turbulence and magnetic reconnection are ubiquitous in astrophysical environments. In most situations, these processes do not occur in isolation, but interact with each other. This renders a comprehensive theory of these processes highly challenging. Here, we propose a theory of magnetohydrodynamic turbulence driven at large scale that self-consistently accounts for the mutual interplay with magnetic reconnection occurring at smaller scales. Magnetic reconnection produces plasmoids that grow from turbulence-generated noise and eventually disrupt the sheet-like structures in which they are born. The disruption of these structures leads to a modification of the turbulent energy cascade, which, in turn, exerts a feedback effect on the plasmoid formation via the turbulence-generated noise. The energy spectrum in this plasmoid-mediated range steepens relative to the standard inertial range and does not follow a simple power law. As a result of the complex interplay between turbulence and reconnection, we also find that the length scale which marks the beginning of the plasmoid-mediated range and the dissipation length scale do not obey true power laws. The transitional magnetic Reynolds number above which the plasmoid formation becomes statistically significant enough to affect the turbulent cascade is fairly modest, implying that plasmoids are expected to modify the turbulent path to dissipation in many astrophysical systems.
A multi-institutional, multi-national science team will soon submit a NASA proposal to build a constellation of spacecraft to fly into the near-Earth solar wind in a swarm spanning a multitude of scales in order to obtain critically needed measuremen ts that will reveal the underlying dynamics of magnetized turbulence. This white paper, submitted to the Plasma 2020 Decadal Survey Committee, provides a brief overview of turbulent systems that constitute an area of compelling plasma physics research, including why this mission is needed, and how this mission will achieve the goal of revealing how energy is transferred across scales and boundaries in plasmas throughout the universe.
The effect of compressibility in charged particle energization by magnetohydrodynamic (MHD) fields is studiedin the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature o f the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibilty effect over the particle dynamics we performed different numerical experiments: an incompressible case, and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio me /mi. For these test particles we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا