ﻻ يوجد ملخص باللغة العربية
A Cartesian grid method combined with a simplified gas kinetic scheme is presented for subsonic and supersonic viscous flow simulation on complex geometries. Under the Cartesian mesh, the computational grid points are classified into four different categories, the fluid point, the solid point, the drop point, and the interpolation point. The boundaries are represented by a set of direction-oriented boundary points. A constrained weighted least square method is employed to evaluate the physical quantities at the interpolation points. Different boundary conditions, including isothermal boundary, adiabatic boundary, and Euler slip boundary, are presented by different interpolation strategies. We also propose a simplified gas kinetic scheme as the flux solver for both subsonic and supersonic flow computations. The methodology of constructing a simplified kinetic flux function can be extended to other flow systems. A few numerical examples are used to validate the Cartesian grid method and the simplified flux function. The reconstruction scheme for recovering the boundary conditions of compressible viscous and heat conducting flow with a Cartesian mesh can provide a smooth distribution of physical quantities at solid boundary, and present an accurate solution for the flow study with complex geometry.
The recently proposed discrete unified gas kinetic scheme (DUGKS) is a finite volume method for deterministic solution of the Boltzmann model equation with asymptotic preserving property. In DUGKS, the numerical flux of the distribution function is d
Unified gas kinetic scheme (UGKS) is an asymptotic preserving scheme for the kinetic equations. It is superior for transition flow simulations, and has been validated in the past years. However, compared to the well known discrete ordinate method (DO
The hydrostatic equilibrium state is the consequence of the exact hydrostatic balance between hydrostatic pressure and external force. Standard finite volume or finite difference schemes cannot keep this balance exactly due to their unbalanced trunca
An efficient third-order discrete unified gas kinetic scheme (DUGKS) with efficiency is presented in this work for simulating continuum and rarefied flows. By employing two-stage time-stepping scheme and the high-order DUGKS flux reconstruction strat
In this paper, a high-order gas-kinetic scheme in general curvilinear coordinate (HGKS-cur) is developed for the numerical simulation of compressible turbulence. Based on the coordinate transformation, the Bhatnagar-Gross-Krook (BGK) equation is tran