ﻻ يوجد ملخص باللغة العربية
In this paper, a high-order gas-kinetic scheme in general curvilinear coordinate (HGKS-cur) is developed for the numerical simulation of compressible turbulence. Based on the coordinate transformation, the Bhatnagar-Gross-Krook (BGK) equation is transformed from physical space to computational space. To deal with the general mesh given by discretized points, the geometrical metrics need to be constructed by the dimension-by-dimension Lagrangian interpolation. The multidimensional weighted essentially non-oscillatory (WENO) reconstruction is adopted in the computational domain for spatial accuracy, where the reconstructed variables are the cell averaged Jacobian and the Jacobian-weighted conservative variables. The two-stage fourth-order method, which was developed for spatial-temporal coupled flow solvers, is used for temporal discretization. The numerical examples for inviscid and laminar flows validate the accuracy and geometrical conservation law of HGKS-cur. As a direct application, HGKS-cur is implemented for the implicit large eddy simulation (iLES) in compressible wall-bounded turbulent flows, including the compressible turbulent channel flow and compressible turbulent flow over periodic hills. The iLES results with HGKS-cur are in good agreement with the refereed spectral methods and high-order finite volume methods. The performance of HGKS-cur demonstrates its capability as a powerful tool for the numerical simulation of compressible wall-bounded turbulent flows and massively separated flows.
We explore the role of gravitational settling on inertial particle concentrations in a wall-bounded turbulent flow. While it may be thought that settling can be ignored when the settling parameter $Svequiv v_s/u_tau$ is small ($v_s$ - Stokes settling
On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wa
The ability of linear stochastic response analysis to estimate coherent motions is investigated in turbulent channel flow at friction Reynolds number Re$_tau$ = 1007. The analysis is performed for spatial scales characteristic of buffer-layer and lar
An efficient third-order discrete unified gas kinetic scheme (DUGKS) with efficiency is presented in this work for simulating continuum and rarefied flows. By employing two-stage time-stepping scheme and the high-order DUGKS flux reconstruction strat
The present study investigates the accurate inference of Reynolds-averaged Navier-Stokes solutions for the compressible flow over aerofoils in two dimensions with a deep neural network. Our approach yields networks that learn to generate precise flow