ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete unified gas kinetic scheme on unstructured meshes

197   0   0.0 ( 0 )
 نشر من قبل Lianhua Zhu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently proposed discrete unified gas kinetic scheme (DUGKS) is a finite volume method for deterministic solution of the Boltzmann model equation with asymptotic preserving property. In DUGKS, the numerical flux of the distribution function is determined from a local numerical solution of the Boltzmann model equation using an unsplitting approach. The time step and mesh resolution are not restricted by the molecular collision time and mean free path. To demonstrate the capacity of DUGKS in practical problems, this paper extends the DUGKS to arbitrary unstructured meshes. Several tests of both internal and external flows are performed, which include the cavity flow ranging from continuum to free molecular regimes, a multiscale flow between two connected cavities with a pressure ratio of 10000, and a high speed flow over a cylinder in slip and transitional regimes. The numerical results demonstrate the effectiveness of the DUGKS in simulating multiscale flow problems.



قيم البحث

اقرأ أيضاً

78 - Songze Chen , Zhaoli Guo , Kun Xu 2016
Unified gas kinetic scheme (UGKS) is an asymptotic preserving scheme for the kinetic equations. It is superior for transition flow simulations, and has been validated in the past years. However, compared to the well known discrete ordinate method (DO M) which is a classical numerical method solving the kinetic equations, the UGKS needs more computational resources. In this study, we propose a simplification of the unified gas kinetic scheme. It allows almost identical numerical cost as the DOM, but predicts numerical results as accurate as the UGKS. Based on the observation that the equilibrium part of the UGKS fluxes can be evaluated analytically, the equilibrium part in the UGKS flux is not necessary to be discretized in velocity space. In the simplified scheme, the numerical flux for the velocity distribution function and the numerical flux for the macroscopic conservative quantities are evaluated separately. The simplification is equivalent to a flux hybridization of the gas kinetic scheme for the Navier-Stokes (NS) equations and conventional discrete ordinate method. Several simplification strategies are tested, through which we can identify the key ingredient of the Navier-Stokes asymptotic preserving property. Numerical tests show that, as long as the collision effect is built into the macroscopic numerical flux, the numerical scheme is Navier-Stokes asymptotic preserving, regardless the accuracy of the microscopic numerical flux for the velocity distribution function.
290 - Chen Wu , Chang Shu , Baochang Shi 2017
An efficient third-order discrete unified gas kinetic scheme (DUGKS) with efficiency is presented in this work for simulating continuum and rarefied flows. By employing two-stage time-stepping scheme and the high-order DUGKS flux reconstruction strat egy, third-order of accuracy in both time and space can be achieved in the present method. It is also analytically proven that the second-order DUGKS is a special case of the present method. Compared with the high-order lattice Boltzmann equation {LBE} based methods, the present method is capable to deal with the rarefied flows by adopting the Newton-Cotes quadrature to approximate the integrals of moments. Instead of being constrained by the second-order (or lower-order) of accuracy in time splitting scheme as in the conventional high-order Runge-Kutta (RK) based kinetic methods, the present method solves the original BE, which overcomes the limitation in time accuracy. Typical benchmark tests are carried out for comprehensive evaluation of the present method. It is observed in the tests that the present method is advantageous over the original DUGKS in accuracy and capturing delicate flow structures. Moreover, the efficiency of the present third-order method is also shown in simulating rarefied flows.
In this paper, we develop a discrete unified gas kinetic scheme (DUGKS) for general nonlinear convection-diffusion equation (NCDE), and show that the NCDE can be recovered correctly from the present model through the Chapman-Enskog analysis. We then test the present DUGKS through some classic convection-diffusion equations, and find that the numerical results are in good agreement with analytical solutions and the DUGKS model has a second-order convergence rate. Finally, as a finite-volume method, DUGKS can also adopt the non-uniform mesh. Besides, we performed some comparisons among the DUGKS, finite-volume lattice Boltzmann model (FV-LBM), single-relaxation-time lattice Boltzmann model (SLBM) and multiple-relaxation-time lattice Boltzmann model (MRT-LBM). The results show that the DUGKS model is more accurate than FV-LBM, more stable than SLBM, and almost has the same accuracy as the MRT-LBM. Besides, the using of non-uniform mesh may make DUGKS model more flexible.
The discrete unified gas kinetic scheme (DUGKS) is a new finite volume (FV) scheme for continuum and rarefied flows which combines the benefits of both Lattice Boltzmann Method (LBM) and unified gas kinetic scheme (UGKS). By reconstruction of gas dis tribution function using particle velocity characteristic line, flux contains more detailed information of fluid flow and more concrete physical nature. In this work, a simplified DUGKS is proposed with reconstruction stage on a whole time step instead of half time step in original DUGKS. Using temporal/spatial integral Boltzmann Bhatnagar-Gross-Krook (BGK) equation, the transformed distribution function with inclusion of collision effect is constructed. The macro and mesoscopic fluxes of the cell on next time step is predicted by reconstruction of transformed distribution function at interfaces along particle velocity characteristic lines. According to the conservation law, the macroscopic variables of the cell on next time step can be updated through its macroscopic flux. Equilibrium distribution function on next time step can also be updated. Gas distribution function is updated by FV scheme through its predicted mesoscopic flux in a time step. Compared with the original DUGKS, the computational process of the proposed method is more concise because of the omission of half time step flux calculation. Numerical time step is only limited by the Courant-Friedrichs-Lewy (CFL) condition and relatively good stability has been preserved. Several test cases, including the Couette flow, lid-driven cavity flow, laminar flows over a flat plate, a circular cylinder, and an airfoil, as well as micro cavity flow cases are conducted to validate present scheme. The numerical simulation results agree well with the references results.
395 - Songze Chen , Kun Xu , Zhihui Li 2015
A Cartesian grid method combined with a simplified gas kinetic scheme is presented for subsonic and supersonic viscous flow simulation on complex geometries. Under the Cartesian mesh, the computational grid points are classified into four different c ategories, the fluid point, the solid point, the drop point, and the interpolation point. The boundaries are represented by a set of direction-oriented boundary points. A constrained weighted least square method is employed to evaluate the physical quantities at the interpolation points. Different boundary conditions, including isothermal boundary, adiabatic boundary, and Euler slip boundary, are presented by different interpolation strategies. We also propose a simplified gas kinetic scheme as the flux solver for both subsonic and supersonic flow computations. The methodology of constructing a simplified kinetic flux function can be extended to other flow systems. A few numerical examples are used to validate the Cartesian grid method and the simplified flux function. The reconstruction scheme for recovering the boundary conditions of compressible viscous and heat conducting flow with a Cartesian mesh can provide a smooth distribution of physical quantities at solid boundary, and present an accurate solution for the flow study with complex geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا