ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Measurements and Contextuality

75   0   0.0 ( 0 )
 نشر من قبل Robert B. Griffiths
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum physics the term `contextual can be used in more than one way. One usage, here called `Bell contextual since the idea goes back to Bell, is that if $A$, $B$ and $C$ are three quantum observables, with $A$ compatible (i.e., commuting) with $B$ and also with $C$, whereas $B$ and $C$ are incompatible, a measurement of $A$ might yield a different result (indicating that quantum mechanics is contextual) depending upon whether $A$ is measured along with $B$ (the ${A,B}$ context) or with $C$ (the ${A,C}$ context). An analysis of what projective quantum measurements measure shows that quantum theory is Bell noncontextual: the outcome of a particular $A$ measurement when $A$ is measured along with $B$ would have been exactly the same if $A$ had, instead, been measured along with $C$. A different definition, here called `globally (non)contextual refers to whether or not there is (noncontextual) or is not (contextual) a single joint probability distribution that simultaneously assigns probabilities in a consistent manner to the outcomes of measurements of a certain collection of observables, not all of which are compatible. A simple example shows that such a joint probability distribution can exist even in a situation where the measurement probabilities cannot refer to properties of a quantum system, and hence lack physical significance, even though mathematically well-defined. It is noted that the quantum sample space, a projective decomposition of the identity, required for interpreting measurements of incompatible properties in different runs of an experiment using different types of apparatus has a tensor product structure, a fact sometimes overlooked.



قيم البحث

اقرأ أيضاً

A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea surements are jointly performed. Here, compatible measurements are those that can be performed simultaneously or in any order without disturbance. This conflict is generically called quantum contextuality. In this article, we present an introduction to this subject and its current status. We review several proofs of the Kochen-Specker theorem and different notions of contextuality. We explain how to experimentally test some of these notions and discuss connections between contextuality and nonlocality or graph theory. Finally, we review some applications of contextuality in quantum information processing.
250 - Sixia Yu , C.H. Oh 2014
A kind of paradoxical effects has been demonstrated that the pigeonhole principle, i.e., if three pigeons are put in two pigeonholes then at least two pigeons must stay in the same hole, fails in certain quantum mechanical scenario. Here we shall sho w how to associate a proof of Kochen-Specker theorem with a quantum pigeonhole effect and vise versa, e.g., from state-independent proofs of Kochen-Specker theorem some kind of state-independent quantum pigeonhole effects can be demonstrated. In particular, a state-independent version of the quantum Cheshire cat, which can be rendered as a kind of quantum pigeonhole effect about the trouble of putting two pigeons in two or more pigeonholes, arises from Peres-Mermins magic square proof of contextuality.
77 - Hippolyte Dourdent 2018
The notion of contextuality, which emerges from a theorem established by Simon Kochen and Ernst Specker (1960-1967) and by John Bell (1964-1966), is certainly one of the most fundamental aspects of quantum weirdness. If it is a questioning on scholas tic philosophy and a study of contrafactual logic that led Specker to his demonstration with Kochen, it was a criticism of von Neumanns proof that led John Bell to the result. A misinterpretation of this famous proof will lead them to diametrically opposite conclusions. Over the last decades, remarkable theoretical progresses have been made on the subject in the context of the study of quantum foundations and quantum information. Thus, the graphic generalizations of Cabello-Severini-Winter and Acin-Fritz-Leverrier-Sainz raise the question of the connection between non-locality and contextuality. It is also the case of the sheaf-theoretic approach of Samson Abramsky et al., which also invites us to compare contextuality with the logical structure of certain classical logical paradoxes. Another approach, initiated by Robert Spekkens, generalizes the concept to any type of experimental procedure. This new form of universal contextuality has been raised as a criterion of non-classicality, i.e. of weirdness. It notably led to identify the nature of curious quantum paradoxes involving post-selections and weak measurements. In the light of the fiftieth anniversary of the publication of the Kochen-Specker theorem, this report aims to introduce these results little known to the French scientific public, in the context of an investigation on the nature of the weirdness of quantum physics.
184 - Robert Raussendorf 2009
We show, under natural assumptions for qubit systems, that measurement-based quantum computations (MBQCs) which compute a non-linear Boolean function with high probability are contextual. The class of contextual MBQCs includes an example which is of practical interest and has a super-polynomial speedup over the best known classical algorithm, namely the quantum algorithm that solves the Discrete Log problem.
We introduce a notion of contextuality for transformations in sequential contexts, distinct from the Bell-Kochen-Specker and Spekkens notions of contextuality. Within a transformation-based model for quantum computation we show that strong sequential -transformation contextuality is necessary and sufficient for deterministic computation of non-linear functions if classical components are restricted to mod2-linearity and matching constraints apply to any underlying ontology. For probabilistic computation, sequential-transformation contextuality is necessary and sufficient for advantage in this task and the degree of advantage quantifiably relates to the degree of contextuality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا