ترغب بنشر مسار تعليمي؟ اضغط هنا

ERBU, Expanding Rubber Band Universe

30   0   0.0 ( 0 )
 نشر من قبل Domingos Soares
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Domingos Soares




اسأل ChatGPT حول البحث

I put forward a simple unidimensional mechanical analogue of the three-dimensional universe models of modern relativistic cosmology. The main goal of the proposal is the appropriate appreciation of the intrinsic relationship between Hubbles law and the homogeneity of expanding relativistic models.

قيم البحث

اقرأ أيضاً

76 - John G. Hartnett 2011
The Hubble law, determined from the distance modulii and redshifts of galaxies, for the past 80 years, has been used as strong evidence for an expanding universe. This claim is reviewed in light of the claimed lack of necessary evidence for time dila tion in quasar and gamma-ray burst luminosity variations and other lines of evidence. It is concluded that the observations could be used to describe either a static universe (where the Hubble law results from some as-yet-unknown mechanism) or an expanding universe described by the standard Lambda cold dark matter model. In the latter case, size evolution of galaxies is necessary for agreement with observations. Yet the simple non-expanding Euclidean universe fits most data with the least number of assumptions. From this review it is apparent that there are still many unanswered questions in cosmology and the title question of this paper is still far from being answered.
We show that entanglement can be used to detect spacetime curvature. Quantum fields in the Minkowski vacuum are entangled with respect to local field modes. This entanglement can be swapped to spatially separated quantum systems using standard local couplings. A single, inertial field detector in the exponentially expanding (de Sitter) vacuum responds as if it were bathed in thermal radiation in a Minkowski universe. We show that using two inertial detectors, interactions with the field in the thermal case will entangle certain detector pairs that would not become entangled in the corresponding de Sitter case. The two universes can thus be distinguished by their entangling power.
In this article we investigate the effects of single derivative mixing in massive bosonic fields. In the regime of large mixing, we show that this leads to striking changes of the field dynamics, delaying the onset of classical oscillations and decre asing, or even eliminating, the friction due to Hubble expansion. We highlight this phenomenon with a few examples. In the first example, we show how an axion like particle can have its number abundance parametrically enhanced. In the second example, we demonstrate that the QCD axion can have its number abundance enhanced allowing for misalignment driven axion dark matter all the way down to $f_a$ of order astrophysical bounds. In the third example, we show that the delayed oscillation of the scalar field can also sustain a period of inflation. In the last example, we present a situation where an oscillating scalar field is completely frictionless and does not dilute away in time.
57 - F. Finelli 2000
We investigate the possibility that gauge fluctuations are amplified in an expanding universe by parametric resonance, during the oscillatory regime of a scalar field to which they are coupled. We investigate the couplings of gauge fields to a charge d scalar field and to an axion. For both couplings, gauge field fluctuations undergo exponential instabilities. We discuss how the presence of other charges or currents may counteract the resonance, but we argue that in some cases the resonance will persist and that hence this mechanism could have some relevance for the problem of large scale primordial magnetic fields.
112 - F. Finelli , A. Gruppuso 1999
We extend our analysis for scalar fields in a Robertson-Walker metric to the electromagnetic field and Dirac fields by the method of invariants. The issue of the relation between conformal properties and particle production is re-examined and it is v erified that the electromagnetic and massless spinor actions are conformal invariant, while the massless conformally coupled scalar field is not. For the scalar field case it is pointed out that the violation of conformal simmetry due to surface terms, although ininfluential for the equation of motion, does lead to effects in the quantized theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا