ترغب بنشر مسار تعليمي؟ اضغط هنا

Is the Universe really expanding?

111   0   0.0 ( 0 )
 نشر من قبل John Hartnett
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John G. Hartnett




اسأل ChatGPT حول البحث

The Hubble law, determined from the distance modulii and redshifts of galaxies, for the past 80 years, has been used as strong evidence for an expanding universe. This claim is reviewed in light of the claimed lack of necessary evidence for time dilation in quasar and gamma-ray burst luminosity variations and other lines of evidence. It is concluded that the observations could be used to describe either a static universe (where the Hubble law results from some as-yet-unknown mechanism) or an expanding universe described by the standard Lambda cold dark matter model. In the latter case, size evolution of galaxies is necessary for agreement with observations. Yet the simple non-expanding Euclidean universe fits most data with the least number of assumptions. From this review it is apparent that there are still many unanswered questions in cosmology and the title question of this paper is still far from being answered.


قيم البحث

اقرأ أيضاً

In all Friedman models, the cosmological redshift is widely interpreted as a consequence of the general-relativistic phenomenon of EXPANSION OF SPACE. Other commonly believed consequences of this phenomenon are superluminal recession velocities of di stant galaxies and the distance to the particle horizon greater than c*t (where t is the age of the Universe), in apparent conflict with special relativity. Here, we study a particular Friedman model: empty universe. This model exhibits both cosmological redshift, superluminal velocities and infinite distance to the horizon. However, we show that the cosmological redshift is there simply a relativistic Doppler shift. Moreover, apparently superluminal velocities and `acausal distance to the horizon are in fact a direct consequence of special-relativistic phenomenon of time dilation, as well as of the adopted definition of distance in cosmology. There is no conflict with special relativity, whatsoever. In particular, INERTIAL recession velocities are subluminal. Since in the real Universe, sufficiently distant galaxies recede with relativistic velocities, these special-relativistic effects must be at least partly responsible for the cosmological redshift and the aforementioned `superluminalities, commonly attributed to the expansion of space. Let us finish with a question resembling a Buddhism-Zen `koan: in an empty universe, what is expanding?
In this paper, we analyze the effects of expansion on large scale structure formation in our Universe. We do that by incorporating a cosmological constant term in the gravitational partition function. This gravitational partition function with a cosm ological constant is used for analyzing the thermodynamics of this system. We analyze the virial expansion for this system, and obtain its equation of state. It is observed that the generalization of this equation of state is like the Van der Waals equation. We also analyze a gravitational phase transition in this system using the mean field theory. We construct the cosmic energy equation for this system of galaxies, and discuss its consequences. We obtain and analyze the distribution function for this system, using the gravitational partition function. We also compare the results obtained in this paper with the observational data.
92 - Oyvind Gron 2006
The interpretation of the expanding universe as an expansion of space has recently been challenged. From the geodesic equation in Friedmann universe models and the empty Milne model, we argue that a Newtonian or special relativistic analysis is not a pplicable on large scales, and the general relativistic interpretation in terms of expanding space has the advantage of being globally consistent. We also show that the cosmic redshift, interpreted as an expansion effect, containts both the Doppler effect and the gravitational frequency shift.
Our goal is to interpret the energy equation from Doubly Special Relativity (DSR) of Magueijo-Smolin with an invariant Planck energy scale in order to obtain the speed of light with an explicit dependence on the background temperature of the expandin g universe. We also investigate how other universal constants, including the fine structure constant, have varied since the early universe and, thus, how they have evoluted over the cosmological time related to the temperature of the expanding universe. For instance, we show that both the Planck constant and the electron charge were also too large in the early universe. However, we finally conclude that the fine structure constant has remained invariant with the age and temperature of the universe, which is in agreement with laboratory tests and some observational data.
88 - A. Tartaglia 1998
The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this view the quantum state is characterized by the prescribed behaviour rather than by the specific value a parameter assumes as a result of an interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا