ﻻ يوجد ملخص باللغة العربية
The Hubble law, determined from the distance modulii and redshifts of galaxies, for the past 80 years, has been used as strong evidence for an expanding universe. This claim is reviewed in light of the claimed lack of necessary evidence for time dilation in quasar and gamma-ray burst luminosity variations and other lines of evidence. It is concluded that the observations could be used to describe either a static universe (where the Hubble law results from some as-yet-unknown mechanism) or an expanding universe described by the standard Lambda cold dark matter model. In the latter case, size evolution of galaxies is necessary for agreement with observations. Yet the simple non-expanding Euclidean universe fits most data with the least number of assumptions. From this review it is apparent that there are still many unanswered questions in cosmology and the title question of this paper is still far from being answered.
In all Friedman models, the cosmological redshift is widely interpreted as a consequence of the general-relativistic phenomenon of EXPANSION OF SPACE. Other commonly believed consequences of this phenomenon are superluminal recession velocities of di
In this paper, we analyze the effects of expansion on large scale structure formation in our Universe. We do that by incorporating a cosmological constant term in the gravitational partition function. This gravitational partition function with a cosm
The interpretation of the expanding universe as an expansion of space has recently been challenged. From the geodesic equation in Friedmann universe models and the empty Milne model, we argue that a Newtonian or special relativistic analysis is not a
Our goal is to interpret the energy equation from Doubly Special Relativity (DSR) of Magueijo-Smolin with an invariant Planck energy scale in order to obtain the speed of light with an explicit dependence on the background temperature of the expandin
The EPR paradox and the meaning of the Bell inequality are discussed. It is shown that considering the quantum objects as carrying with them instruction kits telling them what to do when meeting a measurement apparatus any paradox disappears. In this