ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalars Gliding Through an Expanding Universe

58   0   0.0 ( 0 )
 نشر من قبل Gustavo Marques-Tavares
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we investigate the effects of single derivative mixing in massive bosonic fields. In the regime of large mixing, we show that this leads to striking changes of the field dynamics, delaying the onset of classical oscillations and decreasing, or even eliminating, the friction due to Hubble expansion. We highlight this phenomenon with a few examples. In the first example, we show how an axion like particle can have its number abundance parametrically enhanced. In the second example, we demonstrate that the QCD axion can have its number abundance enhanced allowing for misalignment driven axion dark matter all the way down to $f_a$ of order astrophysical bounds. In the third example, we show that the delayed oscillation of the scalar field can also sustain a period of inflation. In the last example, we present a situation where an oscillating scalar field is completely frictionless and does not dilute away in time.

قيم البحث

اقرأ أيضاً

We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of t he phase transition, including the false vacuum fraction, bubble lifetime distribution, bubble number density, mean bubble separation, etc., for an expanding universe. We also study the full set of differential equations governing the evolution of plasma and the scalar field during the phase transition and generalize results obtained in Minkowski spacetime. In particular, we generalize the sound shell model to the expanding universe and determine the velocity field power spectrum. This ultimately provides an accurate calculation of the gravitational wave spectrum seen today for the dominant source of sound waves. For the amplitude of the gravitational wave spectrum visible today, we find a suppression factor arising from the finite lifetime of the sound waves and compare with the commonly used result in the literature, which corresponds to the asymptotic value of our suppression factor. We point out that the asymptotic value is only applicable for a very long lifetime of the sound waves, which is highly unlikely due to the onset of shocks, turbulence and other damping processes. We also point out that features of the gravitational wave spectral form may hold the tantalizing possibility of distinguishing between different expansion histories using phase transitions.
We show that entanglement can be used to detect spacetime curvature. Quantum fields in the Minkowski vacuum are entangled with respect to local field modes. This entanglement can be swapped to spatially separated quantum systems using standard local couplings. A single, inertial field detector in the exponentially expanding (de Sitter) vacuum responds as if it were bathed in thermal radiation in a Minkowski universe. We show that using two inertial detectors, interactions with the field in the thermal case will entangle certain detector pairs that would not become entangled in the corresponding de Sitter case. The two universes can thus be distinguished by their entangling power.
We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes CP violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting wit h an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.
Non-standard interactions (NSI) of neutrinos with matter mediated by a scalar field would induce medium-dependent neutrino masses which can modify oscillation probabilities. Generating observable effects requires an ultra-light scalar mediator. We de rive general expressions for the scalar NSI using techniques of quantum field theory at finite density and temperature, including the long-range force effects, and discuss various limiting cases applicable to the neutrino propagation in different media, such as the Earth, Sun, supernovae and early Universe. We also analyze various terrestrial and space-based experimental constraints, as well as astrophysical and cosmological constraints on these NSI parameters, applicable to either Dirac or Majorana neutrinos. By combining all these constraints, we show that observable scalar NSI effects, although precluded in terrestrial experiments, are still possible in future solar and supernovae neutrino data, and in cosmological observations such as cosmic microwave background and big bang nucleosynthesis data.
116 - L. M. Perrone 2021
We derive a new model for neutrino-plasma interactions in an expanding universe that incorporates the collective effects of the neutrinos on the plasma constituents. We start from the kinetic description of a multi-species plasma in the flat Friedman n-Robertson-Walker metric, where the particles are coupled to neutrinos through the charged- and neutral-current forms of the weak interaction. We then derive the fluid equations and specialize our model to (a) the lepton epoch, where we consider a pair electron-positron plasma interacting with electron (anti-)neutrinos, and (b) after the electron-positron annihilation, where we model an electron-proton plasma and take the limit of slow ions and inertia-less electrons to obtain a set of neutrino-electron magnetohydrodynamics (NEMHD) equations. In both models, the dynamics of the plasma is affected by the neutrino motion through a ponderomotive force and, as a result, new terms appear in the induction equation that can act as a source for magnetic field generation in the early universe. A brief discussion on the possible applications of our model is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا