ﻻ يوجد ملخص باللغة العربية
With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrodinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.
Vacuum-energy calculations with ideal reflecting boundaries are plagued by boundary divergences, which presumably correspond to real (but finite) physical effects occurring near the boundary. Our working hypothesis is that the stress tensor for ideal
We show how the equations for the scalar field (including the massive, massless, minimally and conformally coupled cases) on de Sitter and Anti-de Sitter spaces can be obtained from both the SO$(2,4)$-invariant equation $square phi = 0$ in $mathbb{R}
We introduce a generalization of the usual vacuum energy, called `deformed vacuum energy, which yields anisotropic pressure whilst preserving zero inertial mass density. It couples to the shear scalar in a unique way, such that they together emulate
Perfectly conducting boundaries, and their Dirichlet counterparts for quantum scalar fields, predict nonintegrable energy densities. A more realistic model with a finite ultraviolet cutoff yields two inconsistent values for the force on a curved or e
Inspired by the corresponding problem in QCD, we determine the pressure of massless O(N) scalar field theory up to order g^6 in the weak-coupling expansion, where g^2 denotes the quartic coupling constant. This necessitates the computation of all 4-l