ترغب بنشر مسار تعليمي؟ اضغط هنا

On pattern entropy of weak model sets

160   0   0.0 ( 0 )
 نشر من قبل Christoph Richard
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study point sets arising from cut-and-project constructions. An important class is weak model sets, which include squarefree numbers and visible lattice points. For such model sets, we give a non-trivial upper bound on their pattern entropy in terms of the volume of the window boundary in internal space. This proves a conjecture by R.V. Moody.



قيم البحث

اقرأ أيضاً

554 - Zuhe Zhang 2012
In this paper, firstly we show that the entropy constants of the number of independent sets on certain plane lattices are the same as the entropy constants of the corresponding cylindrical and toroidal lattices. Secondly, we consider three more compl ex lattices which can not be handled by a single transfer matrix as in the plane quadratic lattice case. By introducing the concept of transfer multiplicity, we obtain the lower and upper bounds of the entropy constants of crossed quadratic lattice, generalized aztec diamond lattice and 8-8-4 lattice.
134 - Michael Baake 2015
The theory of regular model sets is highly developed, but does not cover examples such as the visible lattice points, the k-th power-free integers, or related systems. They belong to the class of weak model sets, where the window may have a boundary of positive measure, or even consists of boundary only. The latter phenomena are related to the topological entropy of the corresponding dynamical system and to various other unusual properties. Under a rather natural extremality assumption on the density of the weak model set we establish its pure point diffraction nature. We derive an explicit formula that can be seen as the generalisation of the case of regular model sets. Furthermore, the corresponding natural patch frequency measure is shown to be ergodic. Since weak model sets of extremal density are generic for this measure, one obtains that the dynamical spectrum of the hull is pure point as well.
69 - Didier Bresch 2018
In this note, we propose in the full generality a link between the BD entropy introduced by D. Bresch andB. Desjardins for the viscous shallow-water equations and the Bernis-Friedman (called BF) dissipative entropyintroduced to study the lubrications equations. Dierent dissipative entropies are obtained playing with the dragterms on the viscous shallow water equations. It helps for instance to prove global existence of nonnegativeweak solutions for the lubrication equations starting from the global existence of nonnegative weak solutions forappropriate viscous shallow-water equations.
We refine a result of Matei and Meyer on stable sampling and stable interpolation for simple model sets. Our setting is model sets in locally compact abelian groups and Fourier analysis of unbounded complex Radon measures as developed by Argabright a nd de Lamadrid. This leads to a refined version of the underlying model set duality between sampling and interpolation. For rather general model sets, our methods also yield an elementary proof of stable sampling and stable interpolation sufficiently far away from the critical density, which is based on the Poisson Summation Formula.
178 - Lax Chan , Uwe Grimm 2016
Modifying Rudins original construction of the Rudin-Shapiro sequence, we derive a new substitution-based sequence with purely absolutely continuous diffraction spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا