ﻻ يوجد ملخص باللغة العربية
The theory of regular model sets is highly developed, but does not cover examples such as the visible lattice points, the k-th power-free integers, or related systems. They belong to the class of weak model sets, where the window may have a boundary of positive measure, or even consists of boundary only. The latter phenomena are related to the topological entropy of the corresponding dynamical system and to various other unusual properties. Under a rather natural extremality assumption on the density of the weak model set we establish its pure point diffraction nature. We derive an explicit formula that can be seen as the generalisation of the case of regular model sets. Furthermore, the corresponding natural patch frequency measure is shown to be ergodic. Since weak model sets of extremal density are generic for this measure, one obtains that the dynamical spectrum of the hull is pure point as well.
Consider the extended hull of a weak model set together with its natural shift action. Equip the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure. It is known that the extended hull is a measure-theoretic fa
We study point sets arising from cut-and-project constructions. An important class is weak model sets, which include squarefree numbers and visible lattice points. For such model sets, we give a non-trivial upper bound on their pattern entropy in ter
Let f be an infinitely-renormalizable quadratic polynomial and J_infty be the intersection of forward orbits of small Julia sets of simple renormalizations of f. We prove that J_infty contains no hyperbolic sets.
Nonstandard ergodic averages can be defined for a measure-preserving action of a group on a probability space, as a natural extension of classical (nonstandard) ergodic averages. We extend the one-dimensional theory, obtaining L^1 pointwise ergodic t
In the context of Mathers theory of Lagrangian systems, we study the decomposition in chain-transitive classes of the Mather invariant sets. As an application, we prove, under appropriate hypotheses, the semi-continuity of the so-called Aubry set as a function of the Lagrangian.