ﻻ يوجد ملخص باللغة العربية
In this paper, firstly we show that the entropy constants of the number of independent sets on certain plane lattices are the same as the entropy constants of the corresponding cylindrical and toroidal lattices. Secondly, we consider three more complex lattices which can not be handled by a single transfer matrix as in the plane quadratic lattice case. By introducing the concept of transfer multiplicity, we obtain the lower and upper bounds of the entropy constants of crossed quadratic lattice, generalized aztec diamond lattice and 8-8-4 lattice.
The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets $m_{d,b}(n)$ on the generalized Sierpinski gasket $SG
Given a family $mathcal{I}$ of independent sets in a graph, a rainbow independent set is an independent set $I$ such that there is an injection $phicolon Ito mathcal{I}$ where for each $vin I$, $v$ is contained in $phi(v)$. Aharoni, Briggs, J. Kim, a
We study point sets arising from cut-and-project constructions. An important class is weak model sets, which include squarefree numbers and visible lattice points. For such model sets, we give a non-trivial upper bound on their pattern entropy in ter
We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the firs
We prove an asymptotically tight lower bound on the average size of independent sets in a triangle-free graph on $n$ vertices with maximum degree $d$, showing that an independent set drawn uniformly at random from such a graph has expected size at le