ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyman-alpha emitters gone missing: evidence for late reionization?

168   0   0.0 ( 0 )
 نشر من قبل T. Roy Choudhury
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine high resolution hydrodynamical simulations with an intermediate resolution, dark matter only simulation and an analytical model for the growth of ionized regions to estimate the large scale distribution and redshift evolution of the visibility of Lyman-alpha emission in 6<=z<=8 galaxies. The inhomogeneous distribution of neutral hydrogen during the reionization process results in significant fluctuations in the Lyman-alpha transmissivity on large scales. The transmissivity depends not only on the ionized fraction of the intergalactic medium by volume and the amplitude of the local ionizing background, but is also rather sensitive to the evolution of the relative velocity shift of the Lyman-alpha emission line due to resonant scattering. We reproduce a decline in the space density of Lyman-alpha emitting galaxies as rapid as observed with a rather rapidly evolving neutral fraction between z=6-8, and a typical Lyman-alpha line velocity offset of 100 km/s redward of systemic at z=6 which decreases toward higher redshift. The new (02/2015) Planck results indicate such a recent end to reionization is no longer disfavoured by constraints from the cosmic microwave background.



قيم البحث

اقرأ أيضاً

This publication contains the conference summary of the Understanding Lyman-alpha Emitters conference held at the Max Planck Institute for Astronomy in Heidelberg October 6 - 10, 2008. The scope of the conference was to bring together most of the sci entists working in the field of Lyman-alpha emitters, whether at low or high redshift, or on observational or theoretical aspects, and to summarise how far the field of study of galaxies with Lyman-alpha emission has come. An outlook towards the future of the field was also desired. As part of the conference, two days were dedicated to in total six discussion sessions. The topics were i) new methods and selection methods, ii) morphology, iii) what can the local Universe observations tell us about the high redshift Universe?, iv) clustering, v) SED fitting and vi) Ly-alpha blobs. The chairs of those sessions were asked to summarise the discussions, as presented in these proceedings.
301 - A. Hutter 2014
We build a physical model for high-redshift Lyman Alpha emitters (LAEs) by coupling state of the art cosmological simulations (GADGET-2) with a dust model and a radiative transfer code (pCRASH). We post-process the cosmological simulation with pCRASH using five different values of the escape fraction of hydrogen ionizing photons (f_esc=0.05,0.25,0.5,0.75,0.95) until reionization is complete, i.e. the average neutral hydrogen fraction drops to <X_HI>~10^-4. Then, the only free-parameter left to match model results to the observed Lya and UV luminosity functions of LAEs at z~6.6 is the relative escape of Lyman Alpha (Lya) and continuum photons from the galactic environment (f_alpha/f_c). We find a three-dimensional degeneracy such that the theoretical model can be reconciled with observations for an IGM Lya transmission <T_alpha>_LAE~38-50% (which translates to <X_HI>~0.5-10^-4 for Gaussian emission lines), f_esc~0.05-0.50 and f_alpha/f_c~0.6-1.8.
We calculate Lyman Alpha Emitter (LAE) angular correlation functions (ACFs) at $z simeq 6.6$ and the fraction of lifetime (for the 100 Myrs preceding $zsimeq6.6$) galaxies spend as Lyman Break Galaxies (LBGs) or as LBGs with Lyman Alpha (Ly$alpha$) e mission using a model that combines SPH cosmological simulations (GADGET-2), dust attenuation and a radiative transfer code (pCRASH). The ACFs are a powerful tool that significantly narrows the 3D parameter space allowed by LAE Ly$alpha$ and UV luminosity functions (LFs) alone. With this work, we simultaneously constrain the escape fraction of ionizing photons $f_{esc}=0.05-0.5$, the mean fraction of neutral hydrogen in the intergalactic medium (IGM) $langle chi_{HI} rangle leq 0.01$ and the dust-dependent ratio of the escape fractions of Ly$alpha$ and UV continuum photons $f_{alpha}/f_c=0.6-1.2$. Our results show that reionization has the largest impact on the amplitude of the ACFs, and its imprints are clearly distinguishable from those of $f_{esc}$ and $f_alpha/f_c$. We also show that galaxies with a critical stellar mass of $M_* = 10^{8.5} (10^{9.5})M_{odot}$ produce enough luminosity to stay visible as LBGs (LAEs). Finally, the fraction of time during the past 100 Myrs prior to z=6.6 a galaxy spends as a LBG or as a LBG with Ly$alpha$ emission increases with the UV magnitude (and the stellar mass $M_*$): considering observed (dust and IGM attenuated) luminosities, the fraction of time a galaxy spends as a LBG (LAE) increases from 65% to 100% (0-100%) as $M_{UV}$ decreases from $M_{UV} = -18.0$ to $-23.5$ ($M_*$ increases from $10^8-10^{10.5} M_{odot}$). Thus in our model the brightest (most massive) LBGs most often show Ly$alpha$ emission.
127 - S. Baek , A. Ferrara , B. Semelin 2012
We present a novel method to investigate cosmic reionization, using joint spectral information on high redshift Lyman Alpha Emitters (LAE) and quasars (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Ly{alpha} line is damped not only by intergalactic HI but also internally by dust. Our method allows to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs in two simulation boxes at z=5.7 and z=6.6 and we build synthetic images/spectra of a prototypical LAE. At redshift 5.7, we find that the Ly{alpha} transmissivity (T_LAE) ~ 0.25, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Ly{alpha} line width and (ii) the infall peculiar velocity. At higher redshift, z=6.6, where the transmissivity is instead largely set by the local HI abundance and LAE transmissivity consequently increases with halo mass from 0.15 to 0.3. Although outflows are present, they are efficiently pressure-confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast LOS originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (T_QSO). At smaller impact parameters, d < 1 cMpc, a positive correlation between T_QSO and halo mass is found at z = 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. By cross-correlating T_LAE and T_QSO, we can obtain a HI density estimate unaffected by dust. At z= 5.7, the cross-correlation is relatively weak,whereas at z = 6.6 we find a clear positive correlation. We conclude by briefly discussing the perspectives for the application of the method to existing and forthcoming data.
140 - Vithal Tilvi 2009
We present a simple physical model for populating dark matter halos with Lyman Alpha Emiiters(LAEs) and predict the physical properties of LAEs at z~3-7. The central tenet of this model is that the Ly-alpha luminosity is proportional to the star form ation rate (SFR) which is directly related to the halo mass accretion rate. The only free parameter in our model is then the star-formation efficiency (SFE). An efficiency of 2.5% provides the best-fit to the Ly-alpha luminosity function (LF) at redshift z=3.1, and we use this SFE to construct Ly-alpha LFs at other redshifts. Our model reproduce the Ly-alpha LFs, stellar ages, SFR ~1-10; Msun/yr, stellar masses ~ 10^7-10^8 Msun and the clustering properties of LAEs at z~3-7. We find the spatial correlation lengths ro ~ 3-6 Mpc/h, in agreement with the observations. Finally, we estimate the field-to-field variation ~ 30% for current volume and flux limited surveys, again consistent with observations. Our results suggest that the star formation, and hence Ly-alpha emission in LAEs is powered by the accretion of new material, and that the physical properties of LAEs do not evolve significantly over a wide range of redshifts. Relating the accreted mass, rather than the total mass of halos, to the Ly-alpha luminosity of LAEs naturally gives rise to the duty cycle of LAEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا