ترغب بنشر مسار تعليمي؟ اضغط هنا

The visibility of Lyman Alpha Emitters: constraining reionization, ionizing photons and dust

301   0   0.0 ( 0 )
 نشر من قبل Anne Hutter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Hutter




اسأل ChatGPT حول البحث

We build a physical model for high-redshift Lyman Alpha emitters (LAEs) by coupling state of the art cosmological simulations (GADGET-2) with a dust model and a radiative transfer code (pCRASH). We post-process the cosmological simulation with pCRASH using five different values of the escape fraction of hydrogen ionizing photons (f_esc=0.05,0.25,0.5,0.75,0.95) until reionization is complete, i.e. the average neutral hydrogen fraction drops to <X_HI>~10^-4. Then, the only free-parameter left to match model results to the observed Lya and UV luminosity functions of LAEs at z~6.6 is the relative escape of Lyman Alpha (Lya) and continuum photons from the galactic environment (f_alpha/f_c). We find a three-dimensional degeneracy such that the theoretical model can be reconciled with observations for an IGM Lya transmission <T_alpha>_LAE~38-50% (which translates to <X_HI>~0.5-10^-4 for Gaussian emission lines), f_esc~0.05-0.50 and f_alpha/f_c~0.6-1.8.



قيم البحث

اقرأ أيضاً

Identifying the mechanisms driving the escape of Lyman Continuum (LyC) photons is crucial to find Lyman Continuum Emitter (LCE) candidates. To understand the physical properties involved in the leakage of LyC photons, we investigate the connection be tween the HI covering fraction, HI velocity width, the Lyman alpha (LyA) properties and escape of LyC photons in a sample of 22 star-forming galaxies including 13 LCEs. We fit the stellar continua, dust attenuation, and absorption lines between 920 and 1300 A to extract the HI covering fractions and dust attenuation. Additionally, we measure the HI velocity widths of the optically thick Lyman series and derive the LyA equivalent widths (EW), escape fractions (fesc), peak velocities and fluxes at the minimum of the LyA profiles. Overall, we highlight strong correlations between the presence of low HI covering fractions and (1) low LyA peak velocities; (2) more flux at the profile minimum; and (3) larger EW(LyA), fesc(LyA), and fesc(LyC). Hence, low column density channels are crucial ISM ingredients for the leakage of LyC and LyA photons. Additionally, galaxies with narrower HI absorption velocity widths have higher LyA equivalent widths, larger LyA escape fractions, and lower LyA peak velocity separations. This suggests that these galaxies have low HI column density. Finally, we find that dust regulates the amount of LyA and LyC radiation that actually escapes the ISM. Overall, the ISM porosity is one origin of strong LyA emission and enables the escape of ionizing photons in low-z leakers. However, this is not enough to explain the largest fesc(LyC) observed, which indicates that the most extreme LCEs are likely density-bounded along all lines of sight to the observer. Overall, the neutral gas porosity constrains a lower limit to the escape fraction of LyC and LyA photons, providing a key estimator of the leakage of ionizing photons.
We study the far-infrared properties of 498 Lyman Alpha Emitters (LAEs) at z=2.8, 3.1 and 4.5 in the Extended Chandra Deep Field-South, using 250, 350 and 500 micron data from the Herschel Multi-tiered Extragalactic Survey (HerMES) and 870 micron dat a from the LABOCA ECDFS Submillimeter Survey (LESS). None of the 126, 280 or 92 LAEs at z=2.8, 3.1 and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching $1sigma$ depths of ~0.1 to 0.4 mJy. The LAEs are also undetected at $ge3sigma$ in the stacks, although a $2.5sigma$ signal is observed at 870 micron for the z=2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including a M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star-formation rates of the LAEs. These star-formation rates are then combined with those inferred from the Ly$alpha$ and UV emission to determine lower limits on the LAEs Ly$alpha$ escape fraction ($f_{rm esc}($Ly$alpha$)). For the Sd SED template, the inferred LAEs $f_{rm esc}($Ly$alpha$) are $gtrsim30%$ ($1sigma$) at z=2.8, 3.1 and 4.5, which are all significantly higher than the global $f_{rm esc}($Ly$alpha$) at these redshifts. Thus, if the LAEs $f_{rm esc}($Ly$alpha$) follows the global evolution then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE $f_{rm esc}($Ly$alpha$) of ~10 to 20% ($1sigma$), all of which are slightly higher than the global evolution of $f_{rm esc}($Ly$alpha$) but consistent with it at the 2 to 3$sigma$ level.
We calculate Lyman Alpha Emitter (LAE) angular correlation functions (ACFs) at $z simeq 6.6$ and the fraction of lifetime (for the 100 Myrs preceding $zsimeq6.6$) galaxies spend as Lyman Break Galaxies (LBGs) or as LBGs with Lyman Alpha (Ly$alpha$) e mission using a model that combines SPH cosmological simulations (GADGET-2), dust attenuation and a radiative transfer code (pCRASH). The ACFs are a powerful tool that significantly narrows the 3D parameter space allowed by LAE Ly$alpha$ and UV luminosity functions (LFs) alone. With this work, we simultaneously constrain the escape fraction of ionizing photons $f_{esc}=0.05-0.5$, the mean fraction of neutral hydrogen in the intergalactic medium (IGM) $langle chi_{HI} rangle leq 0.01$ and the dust-dependent ratio of the escape fractions of Ly$alpha$ and UV continuum photons $f_{alpha}/f_c=0.6-1.2$. Our results show that reionization has the largest impact on the amplitude of the ACFs, and its imprints are clearly distinguishable from those of $f_{esc}$ and $f_alpha/f_c$. We also show that galaxies with a critical stellar mass of $M_* = 10^{8.5} (10^{9.5})M_{odot}$ produce enough luminosity to stay visible as LBGs (LAEs). Finally, the fraction of time during the past 100 Myrs prior to z=6.6 a galaxy spends as a LBG or as a LBG with Ly$alpha$ emission increases with the UV magnitude (and the stellar mass $M_*$): considering observed (dust and IGM attenuated) luminosities, the fraction of time a galaxy spends as a LBG (LAE) increases from 65% to 100% (0-100%) as $M_{UV}$ decreases from $M_{UV} = -18.0$ to $-23.5$ ($M_*$ increases from $10^8-10^{10.5} M_{odot}$). Thus in our model the brightest (most massive) LBGs most often show Ly$alpha$ emission.
We combine high resolution hydrodynamical simulations with an intermediate resolution, dark matter only simulation and an analytical model for the growth of ionized regions to estimate the large scale distribution and redshift evolution of the visibi lity of Lyman-alpha emission in 6<=z<=8 galaxies. The inhomogeneous distribution of neutral hydrogen during the reionization process results in significant fluctuations in the Lyman-alpha transmissivity on large scales. The transmissivity depends not only on the ionized fraction of the intergalactic medium by volume and the amplitude of the local ionizing background, but is also rather sensitive to the evolution of the relative velocity shift of the Lyman-alpha emission line due to resonant scattering. We reproduce a decline in the space density of Lyman-alpha emitting galaxies as rapid as observed with a rather rapidly evolving neutral fraction between z=6-8, and a typical Lyman-alpha line velocity offset of 100 km/s redward of systemic at z=6 which decreases toward higher redshift. The new (02/2015) Planck results indicate such a recent end to reionization is no longer disfavoured by constraints from the cosmic microwave background.
We investigate the stellar populations of Lyman alpha emitters (LAEs) at z=5.7 and 6.6 in a 0.65 deg^2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with Subaru/Suprime-Cam, UKIRT/WFCAM, and Spitzer/IRAC. We produce s tacked multiband images at each redshift from 165 (z=5.7) and 91 (z=6.6) IRAC-undetected objects, to derive typical spectral energy distributions (SEDs) of z~6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the HST/WFC3 z-dropout galaxies of similar Muv, with a spectral slope beta ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6um band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10)*10^7 Msun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z=6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical color while keeping the UV color sufficiently blue. We infer that typical LAEs at z~6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyman alpha escape fraction from z=5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons to be f_esc^ion~0.6 at z=5.7 and ~0.9 at z=6.6. We also compare the stellar populations of our LAEs with that of stacked HST/WFC3 z-dropout galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا