ﻻ يوجد ملخص باللغة العربية
The speed meter concept has been identified as a technique that can potentially provide laser-interferometric measurements at a sensitivity level which surpasses the Standard Quantum Limit (SQL) over a broad frequency range. As with other sub-SQL measurement techniques, losses play a central role in speed meter interferometers and they ultimately determine the quantum noise limited sensitivity that can be achieved. So far in the literature, the quantum noise limited sensitivity has only been derived for lossless or lossy cases using certain approximations (for instance that the arm cavity round trip loss is small compared to the arm cavity mirror transmission). In this article we present a generalised, analytical treatment of losses in speed meters that allows accurate calculation of the quantum noise limited sensitivity of Sagnac speed meters with arm cavities. In addition, our analysis allows us to take into account potential imperfections in the interferometer such as an asymmetric beam splitter or differences of the reflectivities of the two arm cavity input mirrors. Finally,we use the examples of the proof-of-concept Sagnac speed meter currently under construction in Glasgow and a potential implementation of a Sagnac speed meter in the Einstein Telescope (ET) to illustrate how our findings affect Sagnac speed meters with meter- and kilometre-long baselines.
Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this
We report on the generation of polarization squeezing of intense, short light pulses using an asymmetric fiber Sagnac interferometer. The Kerr nonlinearity of the fiber is exploited to produce independent amplitude squeezed pulses. The polarization s
The recent discovery of gravitational waves (GW) by LIGO has impressively launched the novel field of gravitational astronomy and it allowed us to glimpse at exciting objects we could so far only speculate about. Further sensitivity improvements at t
Continuous-variable quantum key distribution exploits coherent measurements of the electromagnetic field, i.e., homodyne or heterodyne detection. The most advanced security analyses developed so far relied on idealised mathematical models for such me
A Sagnac atom interferometer can be constructed using a Bose-Einstein condensate trapped in a cylindrically symmetric harmonic potential. Using the Bragg interaction with a set of laser beams, the atoms can be launched into circular orbits, with two