ﻻ يوجد ملخص باللغة العربية
A Sagnac atom interferometer can be constructed using a Bose-Einstein condensate trapped in a cylindrically symmetric harmonic potential. Using the Bragg interaction with a set of laser beams, the atoms can be launched into circular orbits, with two counterpropagating interferometers allowing many sources of common-mode noise to be excluded. In a perfectly symmetric and harmonic potential, the interferometer output would depend only on the rotation rate of the apparatus. However, deviations from the ideal case can lead to spurious phase shifts. These phase shifts have been theoretically analyzed for anharmonic perturbations up to quartic in the confining potential, as well as angular deviations of the laser beams, timing deviations of the laser pulses, and motional excitations of the initial condensate. Analytical and numerical results show the leading effects of the perturbations to be second order. The scaling of the phase shifts with the number of orbits and the trap axial frequency ratio are determined. The results indicate that sensitive parameters should be controlled at the $10^{-5}$ level to accommodate a rotation sensing accuracy of $10^{-9}$ rad/s. The leading-order perturbations are suppressed in the case of perfect cylindrical symmetry, even in the presence of anharmonicity and other errors. An experimental measurement of one of the perturbation terms is presented.
We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently
We report on the generation of polarization squeezing of intense, short light pulses using an asymmetric fiber Sagnac interferometer. The Kerr nonlinearity of the fiber is exploited to produce independent amplitude squeezed pulses. The polarization s
Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this
The degree of freedom of orbital angular momentum (OAM) is an important resource in high-dimensional quantum information processing, as the quantum number of OAM can be infinite. The Dove prism (DP) is a most common tool to manipulate the OAM light,
The speed meter concept has been identified as a technique that can potentially provide laser-interferometric measurements at a sensitivity level which surpasses the Standard Quantum Limit (SQL) over a broad frequency range. As with other sub-SQL mea