ﻻ يوجد ملخص باللغة العربية
We present a fully detailed and highly performing implementation of the Linear Method [J. Toulouse and C. J. Umrigar (2007)] to optimize Jastrow-Feenberg and Backflow Correlations in many-body wave-functions, which are widely used in condensed matter physics. We show that it is possible to implement such optimization scheme performing analytical derivatives of the wave-function with respect to the variational parameters achieving the best possible complexity O(N^3) in the number of particles N.
We introduce an efficient way to improve the accuracy of projected wave functions, widely used to study the two-dimensional Hubbard model. Taking the clue from the backflow contribution, whose relevance has been emphasized for various interacting sys
We propose a Jastrow factor for electron-electron correlations that interpolates between the radial symmetry of the Coulomb interaction at short inter-particle distance and the space-group symmetry of the simulation cell at large separation. The prop
We describe an open-source implementation of the continuous-time interaction-expansion quantum Monte Carlo method for cluster-type impurity models with onsite Coulomb interactions and complex Weiss functions. The code is based on the ALPS libraries.
The so-called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U) has been implemented within the all-electron projector augmented-wave method (PAW), and then used to compute the insulating antiferromagnetic ground sta
We present the $texttt{TRIQS}/texttt{SOM}$ analytic continuation package, an efficient implementation of the Stochastic Optimization Method proposed by A. Mishchenko et al [Phys. Rev. B $textbf{62}$, 6317 (2000)]. $texttt{TRIQS}/texttt{SOM}$ strives