ﻻ يوجد ملخص باللغة العربية
We propose a Jastrow factor for electron-electron correlations that interpolates between the radial symmetry of the Coulomb interaction at short inter-particle distance and the space-group symmetry of the simulation cell at large separation. The proposed Jastrow factor captures comparable levels of the correlation energy to current formalisms, is 40% quicker to evaluate, and offers benefits in ease of use, as we demonstrate in quantum Monte Carlo simulations.
A form of Jastrow factor is introduced for use in quantum Monte Carlo simulations of finite and periodic systems. Test data are presented for atoms, molecules, and solids, including both all-electron and pseudopotential atoms. We demonstrate that our
We present a fully detailed and highly performing implementation of the Linear Method [J. Toulouse and C. J. Umrigar (2007)] to optimize Jastrow-Feenberg and Backflow Correlations in many-body wave-functions, which are widely used in condensed matter
In the quasi-2D electron systems of the layered transition metal dichalcogenides (TMD) there is still a controversy about the nature of the transitions to charge-density wave (CDW) phases, i.e. whether they are described by a Peierls-type mechanism o
We present a simple, robust and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the repres
A formula for the corner charge in terms of the bulk quadrupole moment is derived for two-dimensional periodic systems. This is an analog of the formula for the surface charge density in terms of the bulk polarization. In the presence of an $n$-fold