ﻻ يوجد ملخص باللغة العربية
The strongest evidence for superiority of quantum annealing on spin glass problems has come from comparing simulated quantum annealing using quantum Monte Carlo (QMC) methods to simulated classical annealing [G. Santoro et al., Science 295, 2427(2002)]. Motivated by experiments on programmable quantum annealing devices we revisit the question of when quantum speedup may be expected for Ising spin glass problems. We find that even though a better scaling compared to simulated classical annealing can be achieved for QMC simulations, this advantage is due to time discretization and measurements which are not possible on a physical quantum annealing device. QMC simulations in the physically relevant continuous time limit, on the other hand, do not show superiority. Our results imply that care has to be taken when using QMC simulations to assess quantum speedup potential and are consistent with recent arguments that no quantum speedup should be expected for two-dimensional spin glass problems.
We discuss generation of series expansions for Ising spin-glasses with a symmetric $pm J$ (i.e. bimodal) distribution on d-dimensional hypercubic lattices using linked-cluster methods. Simplifications for the bimodal distribution allow us to go to hi
We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations st
Disconnectivity graphs are used to visualize the minima and the lowest energy barriers between the minima of complex systems. They give an easy and intuitive understanding of the underlying energy landscape and, as such, are excellent tools for under
We study domain walls in 2d Ising spin glasses in terms of a minimum-weight path problem. Using this approach, large systems can be treated exactly. Our focus is on the fractal dimension $d_f$ of domain walls, which describes via $<ell >simL^{d_f}$ t
We use high temperature series expansions to study the $pm J$ Ising spin-glass in a magnetic field in $d$-dimensional hypercubic lattices for $d=5, 6, 7$ and $8$, and in the infinite-range Sherrington-Kirkpatrick (SK) model. The expansions are obtain